摘要:
A system and a method for creating a focus-exposure model of a lithography process are disclosed. The system and the method utilize calibration data along multiple dimensions of parameter variations, in particular within an exposure-defocus process window space. The system and the method provide a unified set of model parameter values that result in better accuracy and robustness of simulations at nominal process conditions, as well as the ability to predict lithographic performance at any point continuously throughout a complete process window area without a need for recalibration at different settings. With a smaller number of measurements required than the prior-art multiple-model calibration, the focus-exposure model provides more predictive and more robust model parameter values that can be used at any location in the process window.
摘要:
The present invention relates to lithographic apparatuses and processes, and more particularly to tools for optimizing illumination sources and masks for use in lithographic apparatuses and processes. According to certain aspects, the present invention significantly speeds up the convergence of the optimization by allowing direct computation of gradient of the cost function. According to other aspects, the present invention allows for simultaneous optimization of both source and mask, thereby significantly speeding the overall convergence. According to still further aspects, the present invention allows for free-form optimization, without the constraints required by conventional optimization techniques.
摘要:
A system has been developed for simulating, verifying, inspecting, characterizing, determining and/or evaluating the lithographic designs, techniques and/or systems, and/or individual functions performed thereby or components used therein. In one embodiment, the system accelerates lithography simulation, inspection, characterization and/or evaluation of the optical characteristics and/or properties, as well as the effects and/or interactions of lithographic systems and processing techniques. In this regard, in one embodiment, the system employs a lithography simulation system architecture, including application-specific hardware accelerators, and a processing technique to accelerate and facilitate verification, characterization and/or inspection of a mask design, for example, RET design, including detailed simulation and characterization of the entire lithography process to verify that the design achieves and/or provides the desired results on final wafer pattern. The system includes: (1) general purpose-type computing device(s) to perform the case-based logic having branches and inter-dependency in the data handling and (2) accelerator subsystems to perform a majority of the computation intensive tasks.
摘要:
A method for determining a difference between a reference image and a further image of a pattern, the method including determining a reference imaging function; determining parameters of a difference function representative of a difference between the reference imaging function and a further imaging function; calculating a difference between the reference image and the further image of the pattern based on the difference function and the determined parameters.
摘要:
The present invention relates to a method for simulating aspects of a lithographic process. According to certain aspects, the present invention uses transmission cross coefficients to represent the scanner data and models. According to other aspects, the present invention enables sensitive data regarding various scanner subsystems to be hidden from third party view, while providing data and models useful for accurate lithographic simulation.
摘要:
A three-dimensional mask model of the invention provides a more realistic approximation of the three-dimensional effects of a photolithography mask with sub-wavelength features than a thin-mask model. In one embodiment, the three-dimensional mask model includes a set of filtering kernels in the spatial domain that are configured to be convolved with thin-mask transmission functions to produce a near-field image. In another embodiment, the three-dimensional mask model includes a set of correction factors in the frequency domain that are configured to be multiplied by the Fourier transform of thin-mask transmission functions to produce a near-field image.
摘要:
Methods for calibrating a photolithographic system are disclosed. A cold lens contour for a reticle design and at least one hot lens contour for the reticle design are generated from which a process window is defined. Aberrations induced by a lens manipulator are characterized in a manipulator model and the process window is optimized using the manipulator model. Aberrations are characterized by identifying variations in critical dimensions caused by lens manipulation for a plurality of manipulator settings and by modeling behavior of the manipulator as a relationship between manipulator settings and aberrations. The process window may be optimized by minimizing a cost function for a set of critical locations.
摘要:
There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a technique of, and system for simulating, verifying, inspecting, characterizing, determining and/or evaluating the lithographic designs, techniques and/or systems, and/or individual functions performed thereby or components used therein. In one embodiment, the present invention is a system and method that accelerates lithography simulation, inspection, characterization and/or evaluation of the optical characteristics and/or properties, as well as the effects and/or interactions of lithographic systems and processing techniques. In this regard, in one embodiment, the present invention employs a lithography simulation system architecture, including application-specific hardware accelerators, and a processing technique to accelerate and facilitate verification, characterization and/or inspection of a mask design, for example, RET design, including detailed simulation and characterization of the entire lithography process to verify that the design achieves and/or provides the desired results on final wafer pattern. The system includes: (1) general purpose-type computing device(s) to perform the case-based logic having branches and inter-dependency in the data handling and (2) accelerator subsystems to perform a majority of the computation intensive tasks.
摘要:
Disclosed is a method of inspecting a reticle defining a circuit layer pattern that is used within a corresponding semiconductor process to generate corresponding patterns on a semiconductor wafer. A test image of the reticle is provided, and the test image has a plurality of test characteristic values. A baseline image containing an expected pattern of the test image is also provided. The baseline image has a plurality of baseline characteristic values that correspond to the test characteristic values. The test characteristic values are compared to the baseline characteristic values such that a plurality of difference values are calculated for each pair of test and baseline characteristic values. Statistical information is also collected.
摘要:
Optical amplifier equipment for operation in fiber-optic communications networks is provided. The optical amplifier equipment may include one or more gain, stages based on rare-earth-doped fiber or Raman-pumped fiber. The gain stages may be optically pumped using diode lasers. Optical monitors may be used to measure optical signals in the optical amplifier equipment. Input signals and output signals may be measured. A control unit may adjust the pump powers in the gain stages based on the measured optical signals to suppress gain transients. An optical delay line may be used to provide additional time for the control unit to process the optical signals before adjusting the pump powers. A midstage module including dispersion-compensating fiber may be installed in the optical amplifier equipment. The control unit may automatically detect the amount of optical delay associated with the installed module and may control the pump powers accordingly during transient control operations.