摘要:
A substrate heater assembly for supporting a substrate of a predetermined standardized diameter during processing is provided. In one embodiment, the substrate heater assembly includes a body having an upper surface, a lower surface and an embedded heating element. A substrate support surface is formed in the upper surface of the body and defines a portion of a substrate receiving pocket. An annular wall is oriented perpendicular to the upper surface and has a length of at least one half a thickness of the substrate. The wall bounds an outer perimeter of the substrate receiving pocket and has a diameter less than about 0.5 mm greater than the predetermined substrate diameter.
摘要:
A method and apparatus for ramping down the deposition pressure in a SACVD process. The present invention also provides a method and apparatus for subsequently ramping up the pressure for a PECVD process in such a manner as to prevent unwanted reactions which could form a weak interlayer interface. In particular, the deposition pressure in the SACVD process is ramped down by stopping the flow of the silicon containing gas (preferably TEOS) and/or the carrier gas (preferably helium), while diluting the flow of ozone with oxygen. A ramp down of the pressure starts at the same time. The diluting of the ozone with oxygen limits reactions with undesired reactants at the end of a process.
摘要:
A method and apparatus is provided to prevent energy transfer to a gas which is flown through a gas line disposed between a biased member and grounded member. In one aspect of the invention, a semi-conductive sleeve, such as a silicon carbide sleeve, is provided which is disposed about a gas line and is in contact with the gas inlet manifold and the gas outlet manifold and has a resistance less than that of the gas which is flown through the gas line.
摘要:
A method of and apparatus for depositing a silicon oxide layer onto a wafer or substrate is provided. The present method includes introducing into a processing chamber a process gas including silicon, oxygen, boron, phosphorus and germanium to form a germanium doped BPSG oxide layer having a reflow temperature of less than 800.degree. C. Preferred embodiments of the present method are performed in either a subatmospheric CVD or a plasma enhanced CVD processing apparatus.