NON-VOLATILE GRAPHENE NANOMECHANICAL SWITCH
    83.
    发明申请
    NON-VOLATILE GRAPHENE NANOMECHANICAL SWITCH 有权
    非挥发性石墨纳米开关

    公开(公告)号:US20140154851A1

    公开(公告)日:2014-06-05

    申请号:US13971165

    申请日:2013-08-20

    Abstract: Methods for making non-volatile switches include depositing gate material in a recess of a substrate; depositing drain metal in a recess of the gate material; planarizing the gate material, drain metal, and substrate; forming sidewalls by depositing material on the substrate around the gate material; forming a flexible conductive element between the sidewalls to establish a gap between the flexible conductive element and the gate material, such that the gap separating the flexible conductive element and the gate material is sized to create a negative threshold voltage at the gate material for opening a circuit; and forming a source terminal in electrical contact with the flexible conductive element.

    Abstract translation: 制造非易失性开关的方法包括将栅极材料沉积在衬底的凹槽中; 将漏极金属沉积在栅极材料的凹槽中; 平面化栅极材料,漏极金属和衬底; 通过在所述栅极材料周围的衬底上沉积材料来形成侧壁; 在所述侧壁之间形成柔性导电元件以在所述柔性导电元件和所述栅极材料之间建立间隙,使得将所述柔性导电元件和所述栅极材料分开的所述间隙的尺寸设计成在所述栅极材料处产生负阈值电压以打开 电路 以及形成与所述柔性导电元件电接触的源极端子。

    Non-volatile graphene nanomechanical switch
    84.
    发明授权
    Non-volatile graphene nanomechanical switch 有权
    非挥发性石墨烯纳米机械开关

    公开(公告)号:US08741700B1

    公开(公告)日:2014-06-03

    申请号:US13971165

    申请日:2013-08-20

    Abstract: Methods for making non-volatile switches include depositing gate material in a recess of a substrate; depositing drain metal in a recess of the gate material; planarizing the gate material, drain metal, and substrate; forming sidewalls by depositing material on the substrate around the gate material; forming a flexible conductive element between the sidewalls to establish a gap between the flexible conductive element and the gate material, such that the gap separating the flexible conductive element and the gate material is sized to create a negative threshold voltage at the gate material for opening a circuit; and forming a source terminal in electrical contact with the flexible conductive element.

    Abstract translation: 制造非易失性开关的方法包括将栅极材料沉积在衬底的凹槽中; 将漏极金属沉积在栅极材料的凹槽中; 平面化栅极材料,漏极金属和衬底; 通过在所述栅极材料周围的衬底上沉积材料来形成侧壁; 在所述侧壁之间形成柔性导电元件以在所述柔性导电元件和所述栅极材料之间建立间隙,使得将所述柔性导电元件和所述栅极材料分隔开的所述间隙的尺寸设定成在所述栅极材料处产生负阈值电压以打开 电路 以及形成与所述柔性导电元件电接触的源极端子。

    Side-gate defined tunable nanoconstriction in double-gated graphene multilayers
    86.
    发明授权
    Side-gate defined tunable nanoconstriction in double-gated graphene multilayers 有权
    侧栅极限定在双门控石墨烯多层中的可调谐纳米收缩

    公开(公告)号:US08624223B2

    公开(公告)日:2014-01-07

    申请号:US13668401

    申请日:2012-11-05

    Abstract: A graphene-based electrically tunable nanoconstriction device and a non-transitory tangible computer readable medium encoded with a program for fabricating the device that includes a back-gate dielectric layer over a conductive substrate are described. The back-gate dielectric layer may be hexagonal boron nitride, mica, SiOx, SiNx, BNx, HfOx or AlOx. A graphene layer is an AB-stacked bi-layer graphene layer, an ABC-stacked tri-layer graphene layer or a stacked few-layer graphene layer. Contacts formed over a portion of the graphene layer include at least one source contact, at least one drain contact and at least one set of side-gate contacts. A graphene channel with graphene side gates is formed in the graphene layer between at least one source contact, at least one the drain contact and at least one set of side-gate contacts. A top-gate dielectric layer is formed over the graphene layer. A top-gate electrode is formed on the top-gate dielectric layer.

    Abstract translation: 描述了基于石墨烯的电可调谐纳射收收装置和编码有用于制造该装置的程序的非暂时有形计算机可读介质,该装置包括导电基板上的背栅介质层。 背栅电介质层可以是六方氮化硼,云母,SiOx,SiNx,BNx,HfOx或AlOx。 石墨烯层是AB层叠的双层石墨烯层,ABC层叠的三层石墨烯层或层叠的几层石墨烯层。 形成在石墨烯层的一部分上的接触层包括至少一个源极接触,至少一个漏极接触和至少一组侧栅接触。 具有石墨烯侧栅极的石墨烯通道在至少一个源极接触件,至少一个漏极接触件和至少一个侧面接触件组之间的石墨烯层中形成。 在石墨烯层上形成顶栅电介质层。 顶栅电极形成在顶栅电介质层上。

    Flexible neural probes
    88.
    发明授权

    公开(公告)号:US10966621B2

    公开(公告)日:2021-04-06

    申请号:US15616985

    申请日:2017-06-08

    Inventor: Shu-Jen Han

    Abstract: Embodiments include microelectrodes including a flexible shank and a bioabsorbable material surrounding the flexible shank. The flexible shank can include a flexible substrate, a circuit, and a plurality of sensors. Embodiments also include a methods of forming flexible active electrode arrays including depositing a flexible polymer on a substrate. The methods also include forming a plurality of sensors on the flexible polymer and attaching a silicon-based chip to the flexible shank. The methods also include coating the flexible shank in a bioabsorbable material and cutting the shank and a portion of the bioabsorbable material from the substrate.

Patent Agency Ranking