Abstract:
Embodiments relate to systems and methods for sensor self-diagnostics using multiple signal paths. In an embodiment, the sensors are magnetic field sensors, and the systems and/or methods are configured to meet or exceed relevant safety or other industry standards, such as SIL standards. For example, a monolithic integrated circuit sensor system implemented on a single semiconductor ship can include a first sensor device having a first signal path for a first sensor signal on a semiconductor chip; and a second sensor device having a second signal path for a second sensor signal on the semiconductor chip, the second signal path distinct from the first signal path, wherein a comparison of the first signal path signal and the second signal path signal provides a sensor system self-test.
Abstract:
The present disclosure relates to a sensor circuit having a first interface configured to receive a first sensor signal in response to a first measurement of a first physical quantity, a first analog-to-digital converter configured to sample the first sensor signal to generate a sampled first sensor signal, a second interface configured to receive a second sensor signal in response to a second measurement of the same first physical quantity, a third interface configured to receive at least one third sensor signal in response to at least one third measurement of at least one second physical quantity that is different from the first physical quantity, a multiplexer configured to multiplex the second and the at least one third sensor signal to a multiplexed sensor signal, and a second analog-to-digital converter coupled to the multiplexer and configured to sample the multiplexed sensor signal to generate a sampled multiplexed sensor signal.
Abstract:
A sensor device includes a high voltage circuit, a sensor and a charge storage. The sensor utilizes a low voltage supply. The high voltage circuit includes a blocking device and a regulating device. The blocking device is configured to block negative voltages of the high voltage supply. The regulated device is configured to receive a high voltage supply and generate the low voltage supply from the high voltage supply. The high voltage supply is DC. The charge storage has a vertical capacitor and is configured to maintain the low voltage supply during a power break and to store and maintain charge during non-break periods.
Abstract:
Provided are apparatuses and methods, in which a disturbed measurement variable is converted to a digital signal. The digital signal is then averaged over a number of sampling values which corresponds to a period of the disturbances.
Abstract:
Embodiments relate to current sensors and methods. In an embodiment, a current sensor comprises a leadframe; a semiconductor die coupled to the leadframe; a conductor comprising a metal layer on the semiconductor die, the conductor comprising at least one bridge portion and at least two slots, a first slot having a first tip and a second slot having a second tip, a distance between the first and second tips defining a width of one of the at least one bridge portion, wherein the conductor is separated from the leadframe by at least a thickness of the semiconductor die, and the thickness is about 0.2 millimeters (mm) to about 0.7 mm; and at least one magnetic sensor element arranged on the die relative to and spaced apart from the one of the at least one bridge portion and more proximate the conductor than the leadframe.
Abstract:
Embodiments related to magnetic current sensors, systems and methods. In an embodiment, a magnetic current sensor integrated in an integrated circuit (IC) and housed in an IC package comprises an IC die formed to present at least three magnetic sense elements on a first surface, a conductor, and at least one slot formed in the conductor, wherein a first end of the at least one slot and at least one of the magnetic sense elements are relatively positioned such that the at least one of the magnetic sense elements is configured to sense an increased magnetic field induced in the conductor proximate the first end of the at least one slot.
Abstract:
A device for converting analog to digital is disclosed. The device includes a dual mode converter and a control unit. The dual mode converter has a coarse mode and a fine mode. The dual mode converter is configured to receive an input signal and convert the input signal to a digital output having a selected resolution. The control unit is coupled to the dual mode converter and is configured to operate the converter in the coarse mode until a coarse approximation is obtained and to operate the converter in the fine mode until a fine approximation is obtained having the selected resolution. The fine mode includes multi-bit incremental tracking.
Abstract:
Embodiments relate to magnetic field angle sensing systems and methods. In an embodiment, a magnetic field angle sensing system configured to determine a rotational position of a magnetic field source around an axis, comprises N sensor devices arranged in a circle concentric to an axis, wherein N>1 and the sensor devices are spaced apart from one another by about (360/N) degrees along the circle, each sensor device comprising a magnetic field sensing device having a sensitivity plane comprising at least one reference direction of the magnetic field sensing device, wherein the magnetic field sensing device is sensitive to a magnetic field component in the sensitivity plane and configured to provide a signal related to a (co)sine of an angle between the reference direction and the magnetic field in the sensitivity plane; and circuitry coupled to the N sensor devices and configured to provide a signal indicative of a rotational position of a magnetic field source around the axis determined by combining the signals from the magnetic field sensing devices of the N sensor devices, wherein the circuitry is configured to (i) interpret the signal of the N sensor devices as angle values, (ii) add integer multiples equivalent to 360° to selective ones of the N angle values to result in at least one monotonously rising or falling sequence of all N corrected values in a single clockwise or counter-clockwise direction of angular positions of respective ones of the N sensor devices, and (iii) average these corrected values.
Abstract:
A device includes a chip and integrated circuit. Devices and integrated circuits are provided where a resistor is coupled to a terminal of a chip or integrated circuit.
Abstract:
A device for converting analog to digital is disclosed. The device includes a dual mode converter and a control unit. The dual mode converter has a coarse mode and a fine mode. The dual mode converter is configured to receive an input signal and convert the input signal to a digital output having a selected resolution. The control unit is coupled to the dual mode converter and is configured to operate the converter in the coarse mode until a coarse approximation is obtained and to operate the converter in the fine mode until a fine approximation is obtained having the selected resolution. The fine mode includes multi-bit incremental tracking.