摘要:
A hard bias structure for biasing a free layer in a MR element within a magnetic read head is comprised of a soft magnetic underlayer such as NiFe and a hard bias layer comprised of Co78.6Cr5.2Pt16.2 or Co65Cr15Pt20 that are rigidly exchange coupled to ensure a well aligned longitudinal biasing direction with minimal dispersions. The hard bias structure is formed on a BCC seed layer such as CrTi to improve lattice matching. The hard bias structure may be laminated in which each of the underlayers and hard bias layers has a thickness that is adjusted to optimize the total HC, Mrt, and S values. The present invention encompasses CIP and CPP spin values, MTJ devices, and multi-layer sensors. A larger process window for fabricating the hard bias structure is realized and lower asymmetry output and NBLW reject rates during a read operation are achieved.
摘要:
A water-soluble reference standard is useful for immunoassays of a lipophilic drugs. The reference standard is a compound of formula (I): G-(L)n—Y; (I) where G is a lipophilic drug; L is a linker which is an alkyl group or heteroalkyl group containing from 1 to 20 carbon atoms; n is 0 or 1; and Y is a water-solubilizing group such as —SO3−, —NR—SO3−, —P(═O)(OH)(O−), or —O—P(═O)(OH)(O−); where R is H or an alkyl group of 1 to 10 carbon atoms.
摘要:
Nano-oxide based current-perpendicular-to-plane (CPP) magnetoresistive (MR) sensor stacks are provided, together with methods for forming such stacks. Such stacks have increased resistance and enhanced magnetoresistive properties relative to CPP stacks made entirely of metallic layers. Said enhanced properties are provided by the insertion of magnetic nano-oxide layers between ferromagnetic layers and non-magnetic spacer layers, whereby said nano-oxide layers increase resistance and exhibit spin filtering properties. CPP sensor stacks of various types are provided, all having nano-oxide layers formed therein, including the spin-valve type and the synthetic antiferromagnetic pinned layer spin-valve type. Said stacks can also be formed upon each other to provide laminated stacks of different types.
摘要:
Improved CPP GMR devices have been fabricated by replacing the conventional seed layer (typically Ta) with a bilayer of NiCr on Ta, said seed being deposited on the NiFe layer that constitutes a magnetic shield. Additional improvement was also obtained by replacing the conventional non-magnetic spacer layer of copper with a sandwich structure of two copper layers with an NOL (nano-oxide layer) between them. A process for manufacturing the devices is provided.
摘要:
Reduction of the free layer thickness in GMR devices is desirable in order to meet higher signal requirements, besides improving the GMR ratio itself. However, thinning of the free layer reduces the GMR ratio and leads to poor thermal stability. This problem has been overcome by making AP2 from an inverse GMR material and by changing the free layer from a single uniform layer to a ferromagnetic layer AFM (antiferromagnetically) coupled to a layer of inverse GMR material. Examples of alloys that may be used for the inverse GMR materials include FeCr, NiFeCr, NiCr, CoCr, CoFeCr, and CoFeV. Additionally, the ruthenium layer normally used to effect antiferromagnetic coupling can be replaced by a layer of chromium. A process to manufacture the structure is also described.
摘要:
Nano-oxide based current-perpendicular-to-plane (CPP) magnetoresistive (MR) sensor stacks are provided, together with methods for forming such stacks. Such stacks have increased resistance and enhanced magnetoresistive properties relative to CPP stacks made entirely of metallic layers. Said enhanced properties are provided by the insertion of magnetic nano-oxide layers between ferromagnetic layers and non-magnetic spacer layers, whereby said nano-oxide layers increase resistance and exhibit spin filtering properties. CPP sensor stacks of various types are provided, all having nano-oxide layers formed therein, including the spin-valve type and the synthetic antiferromagnetic pinned layer spin-valve type. Said stacks can also be formed upon each other to provide laminated stacks of different types.
摘要:
In current synthetically pinned CPP SV designs, AP2 always makes a negative contribution to the device's GMR since its magnetization direction must be anti-parallel to the pinned layer (AP1). This effect has been reduced by replacing the conventional single layer AP2, that forms part of the synthetic pinned layer, with a multilayer structure into which has been inserted at least one layer of a material such as tantalum that serves to depolarize the spin of electrons that traverse its interfaces. The result is a reduction of said negative contribution by AP2, leading to a significant increase in the GMR ratio.
摘要:
A method for fabricating a current-perpendicular-to-plane (CPP) giant magnetoresistive (GMR) sensor of the synthetic spin valve type is provided, the method including an electron-beam lithographic process employing both primary and secondary electron absorption and first and second self-aligned lift-off processes for patterning the capped ferromagnetic free layer and the conducting, non-magnetic spacer layer. The sensor so fabricated has reduced resistance and increased sensitivity.
摘要:
It is known that the magnetic shields, between which CPP GMR stacks are sandwiched, can be a source of AMR (anisotropic magneto-resistance) noise. This has been significantly reduced by coating both the magnetic shields with highly conductive layers. If the guidelines disclosed in the invention are followed, the read head can exhibit AMR noise reduced by about 14 to 20. Additionally, the total thickness of the read gap can be maintained to be as low as 300 to 400 Angstroms.
摘要:
A method for forming top and bottom spin valve sensors and the sensors so formed, the sensors having a strongly coupled SyAP pinned layer and an ultra-thin antiferromagnetic pinning layer. The two strongly coupled ferromagnetic layers comprising the SyAP pinned layer in the top valve configuration are separated by a Ru spacer layer approximately 3 angstroms thick, while the two layers in the bottom spin valve configuration are separated by a Rh spacer layer approximately 5 angstroms thick. This allows the use of an ultra thin MnPt antiferromagnetic pinning layer of thickness between approximately 80 and approximately 150 angstroms. The sensor structure produced thereby is suitable for high density applications.