摘要:
A semiconductor device includes a substrate, a source region formed over the substrate, a drain region formed over the substrate, a first gate electrode over the substrate adjacent to the source region and between the source and drain regions, and a second gate electrode over the substrate adjacent to the drain region and between the source and drain regions.
摘要:
An improved bipolar transistor (40, 40′) is provided, manufacturable by a CMOS IC process without added steps. The improved transistor (40, 40′) comprises an emitter (48) having first (482) and second (484) portions of different depths (4821, 4841), a base (46) underlying the emitter (48) having a central portion (462) of a first base width (4623) underlying the first portion (482) of the emitter (48), a peripheral portion (464) having a second base width (4643) larger than the first base width (4623) partly underlying the second portion (484) of the emitter (48), and a transition zone (466) of a third base width (4644) and lateral extent (4661) lying laterally between the first (462) and second (464) portions of the base (46), and a collector (44) underlying the base (46). The gain of the transistor (40, 40′) is much larger than a conventional bipolar transistor (20) made using the same CMOS process. By adjusting the lateral extent (4661) of the transition zone (466), the properties of the improved transistor (40, 40′) can be tailored to suit different applications without modifying the underlying CMOS IC process.
摘要:
A secure communication method and device based on application layer for mobile financial service. According to the invention, the exchanged messages in the financial transaction are few, and the requirement for the processing capability of the mobile terminal is low. The invention uses the digital signature technology for information abstract based on asymmetric secret keys, and the integrity of the transaction information is guaranteed and non-repudiation requirement is met. The invention also uses digital envelop technology based on asymmetric secret keys, and the secrecy of the transaction information. The strand space theory proves that the security of the preferred embodiment of the invention can be guaranteed.
摘要:
A method for reducing the field dependence of an off-state current flow condition in a field-effect transistor having a source electrode, a drain electrode and a gate electrode, includes the steps of: applying a far off-state bias between the drain electrode and the gate electrode to drive a conduction channel in the field effect transistor into a far off-state; and applying a far off-state bias between the source electrode and the gate electrode to again drive the conduction channel into a far off-state; wherein both applying steps cause application of the far off-state bias for a sufficient time to reduce gate voltage dependency of off-state current flow in the conduction channel during a period when an off-state potential is applied to the gate electrode.
摘要:
An embodiment of a method of fabricating a diode having a plurality of regions of a first conductivity type and a buried region of a second conductivity type includes performing a first dopant implantation procedure to form the buried region, performing a second dopant implantation procedure to form an intermediate region of the plurality of regions, and performing a third dopant implantation procedure to form a contact region of the plurality of regions. The second and third dopant implantation procedures are configured such that the intermediate region is electrically connected with the contact region. The first, second, and third dopant implantation procedures are configured such that the buried region extends laterally across the contact region and the intermediate region to establish first and second junctions of the diode, respectively, and such that the first junction has a lower breakdown voltage than the second junction.
摘要:
An embodiment of a method of fabricating a diode having a plurality of regions of a first conductivity type and a buried region of a second conductivity type includes performing a first dopant implantation procedure to form the buried region, performing a second dopant implantation procedure to form an intermediate region of the plurality of regions, and performing a third dopant implantation procedure to form a contact region of the plurality of regions. The second and third dopant implantation procedures are configured such that the intermediate region is electrically connected with the contact region. The first, second, and third dopant implantation procedures are configured such that the buried region extends laterally across the contact region and the intermediate region to establish first and second junctions of the diode, respectively, and such that the first junction has a lower breakdown voltage than the second junction.
摘要:
A device includes a semiconductor substrate, source and drain regions disposed in the semiconductor substrate and having a first conductivity type, a body region disposed in the semiconductor substrate, having a second conductivity type, and in which the source region is disposed, a drift region disposed in the semiconductor substrate, having the first conductivity type, and through which charge carriers drift during operation upon application of a bias voltage between the source and drain regions, a device isolation region disposed in the semiconductor substrate and laterally surrounding the body region and the drift region, and a breakdown protection region disposed between the device isolation region and the body region and having the first conductivity type.
摘要:
A method of fabricating a bipolar transistor including emitter and base regions having first and second conductivity types, respectively, includes forming an isolation region at a surface of a semiconductor substrate, the isolation region having an edge that defines a boundary of an active area of the emitter region, and implanting dopant of the second conductivity type through a mask opening to form the base region in the semiconductor substrate. The mask opening spans the edge of the isolation region such that an extent to which the dopant passes through the isolation region varies laterally to establish a variable depth contour of the base region.
摘要:
An embodiment of a diode includes a semiconductor substrate, a first contact region having a first conductivity type, a second contact region laterally spaced from the first contact region, and having a second conductivity type, an intermediate region disposed in the semiconductor substrate between the first and second contact regions, electrically connected with the first contact region, and having the first conductivity type, and a buried region disposed in the semiconductor substrate, having the second conductivity type, and electrically connected with the second contact region. The buried region extends laterally across the first contact region and the intermediate region to establish first and second junctions, respectively. The first junction has a lower breakdown voltage than the second junction.
摘要:
A disclosed Zener diode includes, in one embodiment, an anode region and a cathode region that form a shallow sub-surface latitudinal Zener junction. The Zener diode may further include an anode contact region interconnecting the anode region with a contact located away from the Zener junction region and a silicide blocking structure overlying the anode region. The Zener diode may also include one or more shallow, sub-surface longitudinal p-n junctions at the junctions between lateral edges of the cathode region and the adjacent region. The adjacent region may be a heavily doped region such as the anode contact region. In other embodiments, the Zener diode may include a breakdown voltage boost region comprising a more lightly doped region located between the cathode region and the anode contact region.