摘要:
A method for reducing the field dependence of an off-state current flow condition in a field-effect transistor having a source electrode, a drain electrode and a gate electrode, includes the steps of: applying a far off-state bias between the drain electrode and the gate electrode to drive a conduction channel in the field effect transistor into a far off-state; and applying a far off-state bias between the source electrode and the gate electrode to again drive the conduction channel into a far off-state; wherein both applying steps cause application of the far off-state bias for a sufficient time to reduce gate voltage dependency of off-state current flow in the conduction channel during a period when an off-state potential is applied to the gate electrode.
摘要:
Silicon dioxide thin film have been deposited at temperatures from 25° C. to 250° C. by plasma enhanced chemical vapor deposition (PECVD) using tetramethylsilane (TMS) as the silicon containing precursor. At these temperatures, the PETMS oxide films have been found to exhibit adjustable stress and adjustable conformality. Post deposition annealing in forming gas at or below the deposition temperatures has been shown to be very effective in improving the PETMS oxide properties while preserving the low temperature aspect of the PETMS oxides.
摘要:
A method of fabricating a Schottky diode having an integrated junction field-effect transistor (JFET) device includes forming a conduction path region in a semiconductor substrate along a conduction path of the Schottky diode. The conduction path region has a first conductivity type. A lateral boundary of an active area of the Schottky diode is defined by forming a well of a device isolating structure in the semiconductor substrate having a second conductivity type. An implant of dopant of the second conductivity type is conducted to form a buried JFET gate region in the semiconductor substrate under the conduction path region. The implant is configured to further form the device isolating structure in which the Schottky diode is disposed.
摘要:
A device includes a semiconductor substrate, source and drain regions disposed in the semiconductor substrate and having a first conductivity type, a body region disposed in the semiconductor substrate, having a second conductivity type, and in which the source region is disposed, a drift region disposed in the semiconductor substrate, having the first conductivity type, and through which charge carriers drift during operation upon application of a bias voltage between the source and drain regions, a device isolation region disposed in the semiconductor substrate and laterally surrounding the body region and the drift region, and a breakdown protection region disposed between the device isolation region and the body region and having the first conductivity type.
摘要:
The present invention is directed to methods of diagnosing and treating a fibrotic condition in a mammalian subject. These methods involve measuring the levels of trimethylation at lysine residue 27 of histone-3 and/or measuring the expression levels of EZH2 or YY-1. Agents useful for treating fibrosis or a fibrotic condition are also disclosed.
摘要:
A method of fabricating a bipolar transistor device includes performing a first plurality of implantation procedures to implant dopant of a first conductivity type to form emitter and collector regions laterally spaced from one another in a semiconductor substrate, and performing a second plurality of implantation procedures to implant dopant of a second conductivity type in the semiconductor substrate to form a composite base region. The composite base region includes a base contact region, a buried region through which a buried conduction path between the emitter and collector regions is formed during operation, and a base link region electrically connecting the base contact region and the buried region. The base link region has a dopant concentration level higher than the buried region and is disposed laterally between the emitter and collector regions.
摘要:
Bipolar transistors and methods for fabricating bipolar transistors are provided. In one embodiment, the method includes the step or process of providing a substrate having therein a semiconductor base region of a first conductivity type and first doping density proximate an upper substrate surface. A multilevel collector structure of a second opposite conductivity type is formed in the base region. The multilevel collector includes a first collector part extending to a collector contact, a second collector part Ohmically coupled to the first collector part underlying the upper substrate surface by a first depth, a third collector part laterally spaced apart from the second collector part and underlying the upper substrate surface by a second depth and having a first vertical thickness, and a fourth collector part Ohmically coupling the second and third collector parts and having a second vertical thickness different than the first vertical thickness.
摘要:
Semiconductor device structures and related fabrication methods are provided. An exemplary semiconductor device structure includes a collector region of semiconductor material having a first conductivity type, a base region of semiconductor material within the collector region, the base region having a second conductivity type opposite the first conductivity type, and a doped region of semiconductor material having the second conductivity type, wherein the doped region is electrically connected to the base region and the collector region resides between the base region and the doped region. In exemplary embodiments, the dopant concentration of the doped region is greater than a dopant concentration of the collector region to deplete the collector region as the electrical potential of the base region exceeds that of the collector region.
摘要:
A device includes a semiconductor substrate, emitter and collector regions disposed in the semiconductor substrate, having a first conductivity type, and laterally spaced from one another, and a composite base region disposed in the semiconductor substrate, having a second conductivity type, and including a base contact region, a buried region through which a buried conduction path between the emitter and collector regions is formed during operation, and a base link region electrically connecting the base contact region and the buried region. The base link region has a dopant concentration level higher than the buried region and is disposed laterally between the emitter and collector regions.
摘要:
A trench-isolated RESURF diode structure (100) is provided which includes a substrate (150) in which is formed anode (130, 132) and cathode (131) contact regions separated from one another by a shallow trench isolation region (114, 115), along with a non-uniform cathode region (104) and peripheral anode regions (106, 107) which define vertical and horizontal p-n junctions under the anode contact regions (130, 132), including a horizontal cathode/anode junction that is shielded by the heavily doped anode contact region (132).