Abstract:
Provided are a method and a device for encoding a video by using a data unit of a hierarchical structure, and a method and a device for decoding the same. A video encoding device includes: a hierarchical encoder configured to encode a picture of a video based on a data unit of a hierarchical structure; and an entropy coder configured to determine a context model used for entropy coding of a symbol based on hierarchical information of a data unit to which the symbol of the encoded picture belongs, and to entropy encode the symbol using the determined context model.
Abstract:
An image encoding method is provided, in which image data divided into basic blocks is classified in units of groups and subgroups, wherein each group comprises at least one basic block and each subgroup comprises at least one basic block and is included in each group; an encoding mode for a predetermined group is determined in order to encode the predetermined group, wherein the encoding mode represents a mode for encoding data included in the predetermined group in units of one data processing unit selected from a group, a subgroup, and a basic block; and the data of the predetermined group is encoded according to the determined encoding mode. Detailed operations in the image encoding method are performed in consideration of the encoding mode of the group.
Abstract:
Encoding and decoding a video using transformation index that indicates information that indicates a structure of a transformation unit transforming data of a current coding unit.
Abstract:
A method of encoding a video includes: splitting a picture into a maximum coding unit; for the maximum coding unit, determining coding units having a tree structure including coding units of coded depths and determining encoding modes for the coding units of the coded depths by performing encoding based on coding units according to depths, the coding units according to depths obtained by hierarchically splitting the maximum coding unit as a depth deepens; and outputting information about a maximum coding unit size and, for the maximum coding unit, information indicating an order of split information and skip mode information which is selectively determined for the coding units according to depths, information about the encoding modes for the coding units of the coded depths including the split information and the skip mode information which are arranged according to the order, and encoded video data.
Abstract:
A method and apparatus for decoding a video and a method and apparatus for encoding a video are provided. The method for decoding the video includes: receiving and parsing a bitstream of an encoded video; extracting, from the bitstream, encoded image data of a current picture of the encoded video assigned to a maximum coding unit, and information about a coded depth and an encoding mode according to the maximum coding unit; and decoding the encoded image data for the maximum coding unit based on the information about the coded depth and the encoding mode for the maximum coding unit, in consideration of a raster scanning order for the maximum coding unit and a zigzag scanning order for coding units of the maximum coding unit according to depths.
Abstract:
Disclosed is a method of encoding a video, the method including: splitting a current picture into at least one maximum coding unit; determining a coded depth to output a final encoding result according to at least one split region obtained by splitting a region of the maximum coding unit according to depths, by encoding the at least one split region, based on a depth that deepens in proportion to the number of times the region of the maximum coding unit is split; and outputting image data constituting the final encoding result according to the at least one split region, and encoding information about the coded depth and a prediction mode, according to the at least one maximum coding unit.
Abstract:
A method of decoding an image including performing entropy-decoding to obtain quantized transformation coefficients of at least one transformation unit in a coding unit of the image, performing inverse-quantization and inverse-transformation on the quantized transformation coefficients of the at least one transformation unit to obtain residuals, and performing inter prediction for at least one prediction unit in the coding unit to generate a predictor and restoring the image by using the residuals and the predictor.
Abstract:
An apparatus for decoding an image includes an encoding information extractor which extracts split information indicating whether to split a coding unit of an upper depth into coding units of deeper depths and skip information indicating whether a prediction mode of a current coding unit is a skip mode, from image data and a decoding unit which determines a split structure of a maximum coding unit, according to the split information so that the maximum coding unit is hierarchically split as a depth increases and determines whether the prediction mode of the current coding unit is the skip mode according to the skip information.
Abstract:
A method of decoding a video includes determining coding units having a hierarchical structure being data units in which the encoded image is decoded, and sub-units for predicting the coding units, by using information that indicates division shapes of the coding units and information about prediction units of the coding units, parsed from a received bitstream of a encoded image, wherein the sub-units comprise partitions obtained by splitting at least one of a height and a width of the coding units according to at least one of a symmetric ratio and an asymmetric ratio, and reconstructing the image by performing decoding including motion compensation using the partitions for the coding units, using the encoding information parsed from the received bitstream, wherein the coding units having the hierarchical structure comprise coding units of coded depths split hierarchically according to the coded depths and independently from neighboring coding units.
Abstract:
An apparatus for decoding a video includes a receiver which receives and obtains a bitstream of an encoded image, a processor which determines coding units having a hierarchical structure being data units in which the encoded image is decoded, and sub-units for predicting the coding units, by using information that indicates division shapes of the coding units and information about prediction units of the coding units, obtained from the received bitstream, wherein the sub-units comprise partitions obtained by splitting at least one of a height and a width of the coding units according to at least one of a symmetric ratio and an asymmetric ratio, and a decoder which reconstructs the image by performing decoding including motion compensation using the partitions for the coding units, using the encoding information parsed from received bitstream, wherein the coding units having the hierarchical structure comprise coding units of coded depths split hierarchically according to the coded depths and independently from neighboring coding units.