摘要:
An object is, in a thin film transistor including an oxide semiconductor layer, to reduce contact resistance between the oxide semiconductor layer and source and drain electrode layers electrically connected to the oxide semiconductor layer. The source and drain electrode layers have a stacked-layer structure of two or more layers in which a layer in contact with the oxide semiconductor layer is formed using a metal whose work function is lower than the work function of the oxide semiconductor layer or an alloy containing such a metal. Layers other than the layer in contact with the oxide semiconductor layer of the source and drain electrode layers are formed using an element selected from Al, Cr, Cu, Ta, Ti, Mo, or W, an alloy containing any of these elements as a component, an alloy containing any of these elements in combination, or the like.
摘要:
The purpose of the invention is increasing the efficiency of utilizing an EL material and providing a deposition method and a vapor deposition apparatus which is one of the film formation systems which are excellent in throughput and uniformity in film thickness in forming an EL layer. According to the invention, evaporation is performed by moving or reciprocating an evaporation source holder in which a plurality of containers (crucible) each encapsulating an evaporation material are set only in an X direction while moving a substrate at regular intervals. Further, in the plurality of evaporation source holders, film thickness meters of adjacent evaporation sources are disposed alternately so as to sandwich the movement pathway of the substrate.
摘要:
An object is to improve reliability of a semiconductor device. A semiconductor device including a driver circuit portion and a display portion (also referred to as a pixel portion) over the same substrate is provided. The driver circuit portion and the display portion include thin film transistors in which a semiconductor layer includes an oxide semiconductor; a first wiring; and a second wiring. The thin film transistors each include a source electrode layer and a drain electrode layer. In the thin film transistor in the driver circuit portion, the semiconductor layer is sandwiched between a gate electrode layer and a conductive layer. The first wiring and the second wiring are electrically connected to each other in an opening provided in a gate insulating film through an oxide conductive layer.
摘要:
An object is to improve the aperture ratio of a semiconductor device. The semiconductor device includes a driver circuit portion and a display portion (also referred to as a pixel portion) over the same substrate. The driver circuit includes a channel-etched thin film transistor for driver circuit and a driver circuit wiring formed using metal. Source and drain electrodes of the thin film transistor for the driver circuit are formed using a metal. A channel layer of the thin film transistor for the driver circuit is formed using an oxide semiconductor. The display portion includes a bottom-contact thin film transistor for a pixel and a display portion wiring formed using an oxide conductor. Source and drain electrode layers of the thin film transistor for the pixel are formed using an oxide conductor. A semiconductor layer of the thin film transistor for the pixel is formed using an oxide semiconductor.
摘要:
A composite material includes an organic compound represented by the following general formula (1) and an inorganic compound, where, in the general formula (1), R1 to R24 is identical to or different from one another, and represent any of hydrogen, an alkyl group, an alkoxy group, an aryl group, and an arylalkyl group. A light emitting element includes the composite material and a light emitting device and an electronic appliance includes the light emitting element. The composite material has an excellent carrier transporting property and an excellent carrier injecting property with respect to the organic compound along with high visible light transmittance. By utilizing the composite material, a current excitation type light emitting element requiring low driving voltage and having excellent light emitting efficiency is obtained. By using the light emitting element, a light emitting device consuming low power and an electronic appliance including the light emitting device is provided.
摘要:
An object is to provide a method for manufacturing a highly reliable semiconductor device including thin film transistors which have stable electric characteristics and are formed using an oxide semiconductor. A method for manufacturing a semiconductor device includes the steps of: forming an oxide semiconductor film over a gate electrode with a gate insulating film interposed between the oxide semiconductor film and the gate electrode, over an insulating surface; forming a first conductive film including at least one of titanium, molybdenum, and tungsten, over the oxide semiconductor film; forming a second conductive film including a metal having lower electronegativity than hydrogen, over the first conductive film; forming a source electrode and a drain electrode by etching of the first conductive film and the second conductive film; and forming an insulating film in contact with the oxide semiconductor film, over the oxide semiconductor film, the source electrode, and the drain electrode.
摘要:
An object of an embodiment of the present invention is to provide a semiconductor device provided with a thin film transistor which includes an oxide semiconductor layer and has high electric characteristics. The semiconductor device includes a gate electrode over an insulating surface, an oxide semiconductor layer including silicon oxide, an insulating layer between the gate electrode and the oxide semiconductor layer, and source and drain regions between the oxide semiconductor layer including silicon oxide and source and drain electrode layers. The source and drain regions are formed using a degenerate oxide semiconductor material or a degenerate oxynitride material.
摘要:
One object is to provide a semiconductor device with a structure which enables reduction in parasitic capacitance sufficiently between wirings. In a bottom-gate type thin film transistor including a stacked layer of a first layer which is a metal thin film oxidized partly or entirely and an oxide semiconductor layer, the following oxide insulating layers are formed together: an oxide insulating layer serving as a channel protective layer which is over and in contact with a part of the oxide semiconductor layer overlapping with a gate electrode layer; and an oxide insulating layer which covers a peripheral portion and a side surface of the stacked oxide semiconductor layer.
摘要:
In a thin film transistor including an oxide semiconductor, an oxide cluster having higher electrical conductance than the oxide semiconductor layer is formed between the oxide semiconductor layer and a gate insulating layer, whereby field effect mobility of the thin film transistor can be increased and increase of off current can be suppressed.
摘要:
An object is to manufacture and provide a highly reliable semiconductor device including a thin film transistor with stable electric characteristics. In a method for manufacturing a semiconductor device including a thin film transistor in which a semiconductor layer including a channel formation region serves as an oxide semiconductor film, heat treatment for reducing impurities such as moisture (heat treatment for dehydration or dehydrogenation) is performed after an oxide insulating film serving as a protective film is formed in contact with an oxide semiconductor layer. Then, the impurities such as moisture, which exist not only in a source electrode layer, in a drain electrode layer, in a gate insulating layer, and in the oxide semiconductor layer but also at interfaces between the oxide semiconductor film and upper and lower films which are in contact with the oxide semiconductor layer, are reduced.