摘要:
A transmitter that includes a first phase locked loop (PLL) and a second PLL coupled to the first PLL is described. In one implementation, the first PLL is an inductance-capacitance (LC) type PLL and the second PLL is a ring type PLL. Also, in one embodiment, the transmitter further includes a PLL selection multiplexer coupled to the first and second PLLs, where the PLL selection multiplexer receives an output of the first PLL and an output of the second PLL and outputs either the output of the first PLL or the output of the second PLL. In one implementation, a control signal for controlling selection by the PLL selection multiplexer is programmable at runtime. In one implementation, the transmitter of the present invention further includes a clock generation block coupled to the PLL selection multiplexer, a serializer block coupled to the clock generation block and a transmit driver block coupled to the serializer block. In one embodiment, the transmit driver block includes only one post-tap pre-driver and only one main-tap pre-driver. The transmitter of the present invention is capable of operating in a wide range mode or a low jitter mode by selecting the appropriate PLL. In wide range mode, a wider frequency range is desirable. On the other hand, in low jitter mode, a low jitter is desirable.
摘要:
A programmable logic device is provided with adaptive equalization circuitry that is programmable in one or more respects. Examples of the programmable aspects of the equalization circuitry are (1) the number of taps used, (2) whether integer or fractional spaced taps are used, (3) what starting values are used in the computation of coefficient values, (4) whether satisfactory coefficient values are computed only once or on an on-going basis, (5) whether an error signal is generated using a decision directed algorithm or using a training pattern, (6) what training pattern (if any) is used, and/or (7) the location of the sampling point in the bit period of the signal to be equalized.
摘要:
An oscillator circuit includes transistors that are cross-coupled through routing conductors in a first conductive layer. The oscillator circuit also includes a varactor, a capacitor, and an option conductor in a second conductive layer. The option conductor forms at least a portion of a connection between one of the transistors and the capacitor or the varactor.
摘要:
High-speed serial interface (“HSSI”) transceiver circuitry (e.g., on a programmable logic device (“PLD”) integrated circuit) includes input buffer circuitry with adaptive equalization capability. The transceiver circuitry also includes an output driver, which may include pre-emphasis capability (preferably controllably settable). Selectively usable loop-back circuitry is provided for allowing the output signal of the input buffer to be applied substantially directly to the output driver. The loop-back circuitry may include a loop-back driver, which may be turned on substantially only when needed for loop-back operations.
摘要:
A programmable logic device (“PLD”) includes circuitry for optionally and variably modifying characteristics of an input signal in any of several respects. Examples of such modifications include AC coupling the signal into the PLD, low pass filtering the signal (with selectable low-pass filter corner frequency), shifting the common voltage of the input signal, and/or subjecting the input signal to a selectable amount of attenuation.
摘要:
A serial interface for a programmable logic device can be used as a conventional high-speed quad interface, but also allows an individual channel, if not otherwise being used, to be programmably configured as a loop circuit (e.g., a phase-locked loop). This is accomplished by disabling the data loop of clock-data recovery circuitry in the channel, and reconfiguring the reference loop to operate as a loop circuit. In addition, instead of providing a high-speed quad interface having four channels and one or more clock management units (CMUs), a more flexible interface having five or more channels can be provided, and when it is desired to use the interface as a high-speed quad interface, one or more channels can be configured as loop circuits to function as CMUs.
摘要:
Clock data recovery (CDR) circuitry can be provided with dynamic support for changing data rates caused by the interfacing of different protocols. The CDR circuitry, which operates in reference clock mode and data mode, can be controlled by two control signals that signal the CDR circuitry to automatically switch between reference clock mode and data mode, to operate only in reference clock mode, or to operate only in data mode. The control signals can be set by a programmable logic device (PLD), by circuitry external to the PLD, or by user input. A dynamically adjustable parts per million (PPM) detector can also be provided in the CDR circuitry to signal when processing of data during the reference clock mode is completed.
摘要:
A system includes a programmable transmitter device (e.g., a PLD) connected to a programmable receiver device (e.g., another PLD) via a transmission medium for transmitting a high-speed data signal from the transmitter to the receiver. During a test mode of operation a low-speed communication link between the transmitter and receiver allows those devices to work together to transmit test signals having known characteristics from the transmitter to the receiver via the transmission medium, to analyze the test signals as received by the receiver, and to adjust at least some aspect of the system (e.g., equalizer circuitry in the receiver) to at least partly compensate for losses in the test signals as received by the receiver.
摘要:
A programmable logic device (“PLD”) includes circuitry for optionally and variably modifying characteristics of an input signal in any of several respects. Examples of such modifications include AC coupling the signal into the PLD, low pass filtering the signal (with selectable low-pass filter corner frequency), shifting the common voltage of the input signal, and/or subjecting the input signal to a selectable amount of attenuation.
摘要:
Systems and methods are provided using dynamically adjustable differential output drivers. Integrated circuits such as programmable logic devices may be provided with adjustable differential output drivers for transmitting high-speed data to other integrated circuits. The peak-to-peak output voltage and common-mode voltage of the output drivers may be adjusted. Dynamic control circuitry may be used to control the settings of current sources, programmable resistors, and voltage source circuitry in the adjustable differential output driver automatically in real time. The adjustable components in the differential output driver may be adjusted by the dynamic control circuitry based on feedback information received from the integrated circuit to which the data is transmitted.