摘要:
Clock data recovery (CDR) circuitry or phase locked loop (PLL) circuitry can be provided with a dynamically adjustable bandwidth. One CDR circuit or PLL circuit can be provided to support multiple systems or protocols, multiple parameter requirements for a given system or protocol, and changes in the input frequency or data rate within a given system or protocol. The parameters can include jitter (e.g., jitter tolerance, jitter transfer, jitter generation), source of dominant noise, and lock time. Control signals can be used to dynamically adjust the bandwidth of the CDR circuitry or PLL circuitry while the circuitry is processing data. The control signals can be set by a PLD, by a processor, by circuitry external to the PLD, or by user input.
摘要:
Clock data recovery (CDR) circuitry can be provided with dynamic support for changing data rates caused by the interfacing of different protocols. The CDR circuitry, which operates in reference clock mode and data mode, can be controlled by two control signals that signal the CDR circuitry to automatically switch between reference clock mode and data mode, to operate only in reference clock mode, or to operate only in data mode. The control signals can be set by a programmable logic device (PLD), by circuitry external to the PLD, or by user input. A dynamically adjustable parts per million (PPM) detector can also be provided in the CDR circuitry to signal when processing of data during the reference clock mode is completed.
摘要:
Clock and data recovery circuitry is provided that is used in integrated circuits such as programmable logic device integrated circuits. The clock and data recovery circuitry may recover digital data and an embedded clock from a high-speed differential input data stream. The clock and data recovery circuitry may have automatic mode switching capabilities. When operated in reference mode, the clock and data recovery circuit may use a first phase-locked loop to lock onto a reference clock. When operated in data mode, the clock and data recovery circuit may use a second phase-locked loop to lock onto the phase of the differential data stream. A control circuit may automatically switch the clock and data recovery circuit between the reference mode and the data mode. Override signals may be used to force the clock and data recovery circuit out of the automatic mode and into either the reference or data mode.
摘要:
Methods and apparatus are provided for generating a clock signal with relatively high bandwidth and relatively low phase noise. A circuit of the invention can include a pair of transistors serially coupled between a signal of relatively high voltage and a source of relatively low voltage, where a voltage of the signal of relatively high voltage can vary according to a voltage of a variable control signal. A gate of one of the pair of transistors can be coupled to an input clock signal, and an output node between the pair of transistors can be coupled to an output clock signal. The circuit can also include a third transistor, whose drain and source are coupled to the output clock signal, and whose gate can be coupled to a gear input signal. This circuit can advantageously operate under at least two different gears, each with different bandwidth and phase noise characteristics.
摘要:
Serial data transmitter circuitry on a PLD includes a number of features that enable the transmitter to support many different communication protocols under a wide range of circuit conditions. Examples of features that the transmitter may include are (1) multiple pre-emphasis circuits of selectable strength and polarity, (2) selectable VOD, (3) selectable slew rate, (4) calibratable termination, (5) selectable common mode voltage, and (6) electrical idle mode.
摘要:
High speed transmitter drivers and other types of driver circuitry may be required to produce output signals with variable slew rates. Driver circuitry and methods for providing variable slew rate control are described. Pre-driver circuitry with variable slew-rate may be used to supply signals with variable slew rate at the driver input. The driver and/or pre-driver circuits may include transistors with variable drive strengths. The driver and/or pre-driver circuits may also include selectably enabled stages for varying the circuit drive strength. The pre-driver circuitry may be delay matched to maintain signal quality. Other circuitry and methods are also described.
摘要:
Methods and apparatus are provided for generating a clock signal with relatively high bandwidth and relatively low phase noise. A circuit of the invention can include a pair of transistors serially coupled between a signal of relatively high voltage and a source of relatively low voltage, where a voltage of the signal of relatively high voltage can vary according to a voltage of a variable control signal. A gate of one of the pair of transistors can be coupled to an input clock signal, and an output node between the pair of transistors can be coupled to an output clock signal. The circuit can also include a third transistor, whose drain and source are coupled to the output clock signal, and whose gate can be coupled to a gear input signal. This circuit can advantageously operate under at least two different gears, each with different bandwidth and phase noise characteristics.
摘要:
Serial data transmitter circuitry on a PLD includes a number of features that enable the transmitter to support many different communication protocols under a wide range of circuit conditions. Examples of features that the transmitter may include are (1) multiple pre-emphasis circuits of selectable strength and polarity, (2) selectable VOD, (3) selectable slew rate, (4) calibratable termination, (5) selectable common mode voltage, and (6) electrical idle mode.
摘要:
Clock data recovery (CDR) circuitry can be provided with dynamic support for changing data rates caused by the interfacing of different protocols. The CDR circuitry, which operates in reference clock mode and data mode, can be controlled by two control signals that signal the CDR circuitry to automatically switch between reference clock mode and data mode, to operate only in reference clock mode, or to operate only in data mode. The control signals can be set by a programmable logic device (PLD), by circuitry external to the PLD, or by user input. A dynamically adjustable parts per million (PPM) detector can also be provided in the CDR circuitry to signal when processing of data during the reference clock mode is completed.
摘要:
An integrated circuit (“IC”) may include clock and data recovery (“CDR”) circuitry for recovering data information from an input serial data signal. The CDR circuitry may include a reference clock loop and a data loop. A retimed (recovered) data signal output by the CDR circuitry is monitored by other control circuitry on the IC for a communication change request contained in that signal. Responsive to such a request, the control circuitry can change an operating parameter of the CDR circuitry (e.g., a frequency division factor used in either of the above-mentioned loops).