Abstract:
A method is provided for operating a coal gasifier, preferably an oxygen-blown two zone-coal gasifier, without the need for the addition of water and producing a high LHV-content coal product fuel gas from coal. A first supply of coal, preferably dry coal, first supply of carbon dioxide, and a supply of oxygen are passed into a high pressure combustion vessel wherein the coal reacts with the oxygen and carbon dioxide to form an exothermic zone producing a combustion temperature in excess of the melting point of the ash in the coal. This in turn produces a melted ash and a combustion product gas comprising carbon monoxide. The melted ash is drained or otherwise removed for disposal and the combustion product gas subsequently is passed into an entrained flow reaction vessel. A second supply of dry coal and a second supply of carbon dioxide are injected into the entrained flow reaction vessel wherein the coal thermally reacts with the combustion product gas and the carbon dioxide and produces a product fuel gas. The resultant product fuel gas comprises more moles of carbon monoxide than moles of carbon in the first and second supplies of coal. The product fuel gas may exhibit a gas exit temperature at a value below the melting point of the coal ash but no lower than about 1400° Kelvin, and it may be passed to a turbine having closed loop internal cooling thereby recovering energy and lowering the product gas pressure and temperature prior to potential heat exchange with incoming gasifier feed gases.
Abstract:
A method is provided for maximizing the production of electrical energy from coal by improving the thermal efficiency of gasifiers used in integrated coal gasification combined cycle gas turbine (IGCC) systems. Coal is reacted in a gasifier to produce a product fuel gas containing carbon monoxide from combustion of the carbon of the feed coal, plus additional carbon monoxide from the reduction of carbon dioxide, wherein the reaction of carbon monoxide with water is avoided to conserve the work potential of the product fuel gas which will increase the efficiency of conventional gas turbine systems and high temperature fuel cells. Combustion of the product fuel gas with oxygen produces carbon dioxide which is readily recovered from the exhaust by removal of water, such as from combustion of hydrogen in the coal, and molecular hydrogen from the coal may recovered by permeation through a hydrogen permeable membrane.
Abstract:
A novel method is provided for in situ combustion and recovery of oil from underground reservoirs including injecting air into the reservoir at a region near the reservoir floor, withdrawing combustion products from a region near the reservoir ceiling, and collecting oil from a horizontal production well near the reservoir floor.
Abstract:
The invention provides a method for limiting the temperature of the catalyst in exothermic mass-transfer-limited reactions by placing a flow-through catalyst in thermal contact with a downstream non-catalytic flow-through structure placed in the flow stream whereby a portion of the heat-of-reaction is transferred to the downstream non-catalytic structure.
Abstract:
A method and system for dissociating methane hydrate deposits in-situ is provided wherein an oxidizer fluid and a supply of fuel, both at a pressure higher than that of the methane hydrate deposit, are supplied and delivered to the methane hydrate deposit. The fuel is combusted downhole by reacting it with the oxidizer fluid to provide combustion products. The combustion products are placed in contact with a diluent fluid to produce a heated product fluid. The heated product fluid is injected into the methane hydrate deposit whereby methane is dissociated from the methane hydrate and made available for extraction. In addition, carbon dioxide may be made available to promote the formation of carbon dioxide hydrates from the liberated methane hydrate water.
Abstract:
This invention pertains to an apparatus and means to lower emissions of carbon monoxide and nitrogen oxides in lean, pre-mixed gas turbine combustors. Specifically, this invention employs a catalyst deposited on the inner surfaces of the combustor in the region of combustion which oxidizes CO combustion products. Also provided is a means for depositing a catalyst within the thermal barrier coating on the combustor liner walls.
Abstract:
An emissions control system for rich-burn internal combustion engines, includes a reaction chamber for thermal oxidation of exhaust gas fuel values. A passive means utilizes exhaust flow energy for induction of air into engine exhaust gas, and a duct transfers the exhaust gas together with the inducted air into the reaction chamber for thermal oxidation. To achieve a high degree of efficiency the thermal oxidation is facilitated by through mixing of air and exhaust gas to insure gas phase thermal reaction.
Abstract:
An expanded metal with an aerodynamic cross-section for use in high velocity fluid flows to decrease pressure drop. The expanded metal has a rhomboid cross-section with the acute angle of oriented into the flow. Also disclosed is a method of making the expanded metal.
Abstract:
A catalytic reaction system for promoting hydrocarbon reduction during periods of fuel rich engine operation of a multicylinder internal combustion engine which operates from signals generated by a microprocessor based engine controller. Each cylinder is fueled by an injection means, signalled by the engine controller. The amount of fuel injected into each cylinder may be different, so that each cylinder can be operated at different fuel/air ratios. The microprocessor senses metered air intake, ambient temperatures, engine speed and exhaust gas oxygen content. The sensed information is used to calculate the amount of oxygen needed by the catalytic converter to efficiently remove hydrocarbons and by adjusting the fuel/air ratios in one or more cylinders, effects the quantity of oxygen fed to the exhaust gas.
Abstract:
Gas phase combustion producing lower emissions in gas turbines is stabilized in a lean pre-mixed combustor, by flow of the fuel/air mixture through a catalyst which is heated by contact with recirculated, partially reacted combustion gases.