Abstract:
Formal verification methods provide for improved efficiency of popular binary decision diagram (BDD) based algorithms. A lazy pre-image computation method builds new transition relation partitions on-demand for relevant internal variables of a state predicate, and conjoins only next state relations for relevant internal variables to a pre-image including the state predicate. A lazy fixpoint computation method makes iterative use of lazy pre-image computation to compute conditions that must be satisfied to produce a given set of states. A forward assumption propagation method generates assumptions to characterize a set of interesting states for a property being evaluated at one or more evaluation stages. A dynamic transition relation reduction improves the efficiency for symbolic model checking by reducing transition relations under assumptions dynamically generated from properties being evaluated. These methods provide symbolic model checking of circuits and other finite state systems previously too large to be completed successfully using BDD based algorithms.
Abstract:
Methods for formal verification of circuits and other finite-state systems are disclosed herein, providing for improved efficiency and capacity of popular binary decision diagram (BDD) based algorithms. A lazy pre-image computation method is disclosed that builds new transition relation partitions on-demand only for relevant next internal variables of a state predicate. A symbolic variable reduction method is disclosed to eliminate variables in a state predicate under “don't care” conditions. Symbolic variable reduction improves the efficiency for symbolic model checking computations especially lazy pre-image based computations providing means to handle very large-scale integrated circuits and other finite state systems of problematic complexity for prior methods. The teachings of these disclosed methods provide for automated symbolic model checking of circuits and other finite state systems previously too large to be completed successfully using BDD based algorithms.
Abstract:
A noise-suppression circuit (10) divides the signal from a microphone (12) into a plurality of frequency sub-bands by means of a noise-band divider (18) and a subtraction circuit (36). By means of gain circuits (32) and (34), it applies separate gains to the separate bands and then recombines them in a signal combiner (38) to generate an output signal in which the noise has been suppressed. Separate gains are applied only to the lower subbands in the voice spectrum. Accordingly, the noise-band divider (18) is required to compute spectral components for only those bands. By employing a sliding-discrete-Fourier-transform method, the noise-band divider (18) computes the spectral components on a sample-by-sample basis, and circuitry (50, 52) for determining the individual gains can therefore update them on a sample-by-sample basis, too.
Abstract:
Prober space transformer to interface an E-testing apparatus to an unpackaged die. The space transformer may include a substrate and a perforated cover plate disposed on the substrate. The substrate may include conductive traces and an array of conductive probe pins extend outwardly from anchor points on the substrate. The pins are electrically coupled to at least one of the conductive traces on the substrate as a prober interface between an E-testing apparatus and a DUT. The cover plate may be affixed to a surface of the substrate and includes an array of perforations through which the array of conductive pins may pass. The cover plate may be synthetic polymer resin or a polymer-based composite, fabricated, for example by perforating a mold preform.
Abstract:
Disclosed is a method for a femtocell to reduce interference with an overlapping macrocell. The femtocell determines soft-frequency-reuse (“SFR”) information of the macrocell. From that information, the femtocell determines which frequency sub-channels are assigned by the macrocell for its cell-center users and which frequency sub-channels are assigned for cell-edge users. (Cell-edge users are given a higher transmission power profile in order to overcome potential interference with neighboring macrocells.) Then, the femtocell selects from the cell-center user frequency sub-channels for transmission to the femtocell's users. By transmitting on the cell-center user frequency sub-channels, the femtocell reduces interference with the overlapping macrocell. The femtocell continues to update its knowledge of the macrocell's SFR information and re-assigns frequency sub-channels as the SFR changes. If the macrocell detects that one of its cell-center users is “close enough” to the femtocell, then the macrocell re-assigns the cell-center user as a cell-edge user to overcome interference.
Abstract:
Embodiments of the present disclosure are directed to interconnects that include liquid metal, and associated techniques and configurations. The individual interconnects may electrically couple a contact of a printed circuit board (PCB) to a contact of a device under test (DUT). The interconnect may be disposed in or on the PCB. In various embodiments, the interconnect may include a carrier that defines a well (e.g., an opening in the carrier), and the liquid metal may be disposed in the well. In some embodiments, the contact of the DUT, or a contact of an intermediary device, may extend into the well and directly contact the liquid metal. In other embodiments, a flex circuit may be disposed over the well to seal the well. The flex circuit may include a conductive pad to electrically couple the liquid metal to the contact of the DUT. Other embodiments may be described and claimed.
Abstract:
A device, provided at a network edge, receives a radio frequency signal from a user equipment, and converts the radio frequency signal into an electrical signal. The device also receives, from a network controller, at least one of control information, schedule information, or congestion management information. The device performs baseband signal processing on the electrical signal, based on at least one of the control information, the schedule information, or the congestion management information, to create a modified signal. The device provides the modified signal to the network controller.
Abstract:
The present invention discloses a Time Division Dual (TDD) system and a downlink feedback method for a relay link thereof. A relay station and a network side of the TDD system transmit uplink data and downlink feedback through relay subframes, wherein: one or more uplink subframes are selected from uplink subframes of a wireless frame as uplink relay subframes used for uplink data transmission, a downlink subframe is determined for each uplink relay subframe from downlink subframes of the wireless frame as a downlink relay subframe used for downlink feedback or new data indication, wherein the uplink relay subframes and the downlink relay subframes have a fixed timing sequence relationship; the relay station transmits uplink data to the network side through the uplink relay subframes, and receives the downlink feedback or new data indication from the network side through the downlink relay subframes corresponding to the uplink relay subframes.
Abstract:
Disclosed herein are R-7-(3-aminomethyl-4-methoxyimino-3-methyl-pyrrolidin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-[1,8]naphthyridine-3-carboxylic acid and L-aspartic acid salt, process for the preparation thereof and pharmaceutical composition comprising the same for antimicrobial. Because the R-7-(3-aminomethyl-4-methoxyimino-3-methyl-pyrrolidin-1-yl) -1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-[1,8]naphthyridine-3-carboxylic acid and L-aspartic acid salt is more soluble and less toxic and has less side effects as an antimicrobial agent than hydrochloride and the other salts (D-aspartate and phosphate) conventionally used, the salt may be useful for oral and injectable administration.
Abstract:
The invention discloses a method and apparatus for relay station downlink cooperative retransmission, wherein said method comprises: a relay station carrying out physical layer processing in advance on data which requires retransmitting according to different scenarios associated with different possible number of available wireless resources for retransmitting data in a retransmission subframe, generating corresponding OFDM signals, and monitoring the PCFICH of the retransmission subframe, and according to the monitoring result, selecting an OFDM signal which is corresponding to the determined number of available wireless resources from said OFDM signals to carry out retransmission transmitting. The present invention can efficiently solve the problem that the number of wireless resources varies during downlink retransmitting data and the relay station cooperative communication is unable to be carried out normally, without introducing any extra overhead and time delay, and without the control signaling, thus reducing the system complexity.