摘要:
In a nonvolatile memory, one or more peripheral transistor gates are formed from the same layer (140) as the select gate. The gate dielectric (130) for these peripheral transistors and the gate dielectric (130) for the select gates are formed simultaneously. In a nonvolatile memory, the gate dielectric (130) for the peripheral transistors and the gate dielectric (130) for the select gates (140) have the same thickness. Portions of the control gates (170) overlie the select gates.
摘要:
A floating gate of a nonvolatile memory cell is formed from two conductive layers (410.1, 410.2). A dielectric (210) in substrate isolation regions and the first of the two conductive layers providing the floating gates (410.1) are formed so that the dielectric has an exposed sidewall. At least the top portion of the sidewall is exposed. Then some of the dielectric is removed from the exposed portions of the dielectric sidewalls to laterally recess the sidewalls. Then the second conductive layer (410.2) for the floating gates is formed. The recessed sidewalls of the dielectric allow the second conductive layer to expand laterally, thus increasing the capacitive coupling between the floating and control gates and improving the gate coupling ratio.
摘要:
A trench capacitor process for preventing parasitic leakage. The process is capable of blocking leakage current from a parasitic transistor adjacent to the trench, and includes the steps of forming a doping layer and a cap layer covering portions of the sidewall of the trench and performing an annealing process on the doping layer to form a dopant region in the substrate adjacent to each sidewall of the trench and blocks leakage current from a parasitic transistor adjacent to the trench.
摘要:
A method for manufacturing a semiconductor device that includes providing a first layer, cleaning the first layer, growing an oxide layer over the first layer at a reduced pressure from an atmospheric pressure, and depositing a nitride layer over the oxide layer, wherein the growing of the oxide layer and depositing of the nitride layer are performed in the same furnace.
摘要:
A method for manufacturing a semiconductor element is provided. The method includes a first silicon region, a second silicon region, and a metal silicide layer, wherein the metal silicide layer contacts with the first silicon region and the second silicon region separately, the method including steps of performing a first doping process to dope an N-type dopant into the first silicon region and to dope a diffusion barrier impurity into a portion of the metal silicide layer contacting with the first silicon region, and performing a second doping process to dope a P-type dopant into the second silicon region and to dope a diffusion barrier impurity into a portion of the metal silicide layer contacting with the second silicon region.
摘要:
The present invention provides a method of removing residual particles from a polished surface. The method comprises the steps of: providing a substrate, forming a dielectric layer on the substrate, brush-cleaning and etching the dielectric layer on the substrate with a liquid when residual particles are lodged therein, whereby the residual particles are loosened and then relocated to the dielectric layer, and finally cleaning the dielectric layer to remove the relocated residual particles.
摘要:
The present invention provides a method to prevent short of contact and metal lines. The method is applied in a substrate formed with a number of contact windows. The method is comprised of: (a) forming a first conductive layer in the contact windows without filling up the contact windows; (b) forming liners in the contact windows to reduce the openings of the contact windows; (c) forming liner trenches in the contact windows; and (d) forming a second conduction layer on top of the first conductive layer in the contact windows. According to this invention, shorts between contact windows and metal lines is effectively prevented. Therefore, the product yield is greatly improved.
摘要:
A method of forming metal lines is disclosed. The method comprises the steps of: forming a composite metal layer over a wafer, the composite metal layer having a top layer of titanium/titanium nitride; oxidizing the top layer of titanium/titanium nitride to form a layer of titanium oxide; and patterning and etching the composite metal layer to form the metal lines.
摘要:
A chemical mechanical polisher for polishing a surface of a semiconductor wafer is disclosed. The polisher comprises: a polishing table for holding a polishing pad; a rotatable wafer chuck for holding said semiconductor wafer against said polishing pad; an electrical lapping guide secured to said wafer chuck, said electrical lapping guide comprising: a polishable resistive sensor that has a variable resistance dependent upon the amount of material removed from said resistive sensor during polishing; and a bias means for applying a bias to said resistive sensor such that said resistive sensor is in contact with said polishing pad during polishing; a resistance sensing means for determining said variable resistance of said resistive sensor; and a microprocessor for determining the amount of material polished from said resistive sensor based upon said variable resistance.