Optical-readout synaptic device based on SiOxNy and preparation method thereof

    公开(公告)号:US10475996B2

    公开(公告)日:2019-11-12

    申请号:US15989188

    申请日:2018-05-25

    Abstract: An optical-readout synaptic device based on SiOxNy and a preparation method thereof are provided. The device includes a surface plasmonic waveguide and a memristor; the surface plasmonic waveguide has a vertical three-layer structure that a second metal layer, a SiNx dielectric layer and a first metal layer are successively arranged from top to bottom; the memristor has a vertical four-layer structure that a second electrode layer, a second resistive layer, a first resistive layer and a first electrode layer are successively arranged from top to bottom; the memristor is embedded in the surface plasmonic waveguide; and, the first resistive layer and the second resistive layer of the memristor serve as an optical signal transmission channel that is horizontally connected with the SiNx dielectric layer of the surface plasmonic waveguide. The present invention realizes an optical-readout of synaptic weight and has incomparable advantages over a conventional electrical-readout synaptic device.

    SEMICONDUCTOR STRUCTURE, SEMICONDUCTOR ASSEMBLY AND POWER SEMICONDUCTOR DEVICE

    公开(公告)号:US20190305080A1

    公开(公告)日:2019-10-03

    申请号:US15737523

    申请日:2016-08-17

    Abstract: A semiconductor structure, a semiconductor assembly and a power semiconductor device. The semiconductor structure includes: a P-type semiconductor material layer; an N-type semiconductor material layer adjacent to the P-type semiconductor material layer, wherein the N-type semiconductor material layer and the P-type semiconductor material layer together from a PN junction; and a plurality of insulating material layers located outside the PN junction and distributed along the superposition direction of the P-type semiconductor material layer and the N-type semiconductor material layer, wherein the relative dielectric constants of the adjacent insulating material layers are different. The semiconductor structure in the present invention significantly optimizes the distribution of an electric field during the off-state high voltage operation of a device, greatly improves the breakdown voltage of the device, avoids the premature breakdown of the device caused by the concentration effect of the electric field at the edge of the junction.

    METHOD FOR SEPARATING OUT A DEFECT IMAGE FROM A THERMOGRAM SEQUENCE BASED ON FEATURE EXTRACTION AND MULTI-OBJECTIVE OPTIMIZATION

    公开(公告)号:US20190228517A1

    公开(公告)日:2019-07-25

    申请号:US16370136

    申请日:2019-03-29

    Abstract: The present invention provides a method for separating out a defect image from a thermogram sequence based on feature extraction and multi-objective optimization, we find that different kinds of TTRs have big differences in some physical quantities, such as the energy, temperature change rate during endothermic process, temperature change rate during endothermic process, average temperature, maximum temperature. The present invention extract these features (physical quantities) and cluster the selected TTRs into L clusters based on their feature vectors, which deeply digs the physical meanings contained in each TTR, makes the clustering more rational, and improves the accuracy of defect separation. Meanwhile, the present invention creates a multi-objective function to select a RTTR for each cluster based on multi-objective optimization. The multi-objective function does not only fully consider the similarities between the RTTR and other TTRs in the same cluster, but also considers the dissimilarities between the RTTR and the TTRs in other clusters, the RTTR is more representative, which guarantees the accuracy of describing the defect outline.

Patent Agency Ranking