Abstract:
A process and apparatus for processing a monolayer film and transferring the monolayer film to a substrate are provided. In accordance with one embodiment of the present invention, a process for transferring a monolayer film to a substrate is provided comprising the steps of: (i) providing a water-based carrier media defining an upper surface; (ii) introducing process particles on the upper surface of the carrier media, wherein the molecules are dissolved in a solvent and the particles and the solvent are insoluble in the carrier media; (iii) evaporating the solvent such that a non-cohesive monolayer film of the particles is formed on the upper surface of the carrier media; (iv) decreasing a degree of void incorporation in the monolayer film of particles by compressing a dimension of the non-cohesive film along the upper surface of the carrier media, and sonicating the carrier media to form micro-bubbles in the carrier media, wherein the compression and the sonication contribute to a decreased degree of void incorporation in the film of process particles; and (v) transferring the film of particles to a surface of the substrate. The steps of compressing and sonicating may be executed concurrently.
Abstract:
The present invention comprises methods of contact printing of patterned, self-assembling monolayers of alkanethiolates, carboxylic acids, hydroxamic acids, and phosphonic acids on metallized thermoplastic films, the compositions produced thereby, and the use of these compositions. Patterned self-assembling monolayers allow for the controlled placement of fluids thereon which contain a chemically reactive, indicator functionality. The optical sensing devices produced thereby when the film is exposed to an analyte and light, can produce optical diffraction patterns which differ depending on the reaction of the self-assembling monolayer with the analyte of interest. The light can be in the visible spectrum, and be either reflected from the film, or transmitted through it, and the analyte can be any compound reacting with the fluid on the self-assembling monolayer. The present invention also provides a flexible support for a self-assembling monolayer on gold or another suitable metal.
Abstract:
The invention relates in particular to a process for modifying the properties of a hydroxylated surface of a three-dimensional substrate containing exposed zones and recessed zones, according to which a compound, such as a silane containing (a) reactive group(s), is selectively dry-transferred onto the exposed zones of said surface using a a flat stamping pad impregnated with said compound. The substrate may be made of glass and the compound may be a thiol or an alkyl- or aryl-tri(chloro or alkoxy) silane, inter alia. Use, in particular, for the production of microwell plates for biological cultures and printing plates.
Abstract:
Techniques for fabrication of small-scale metallic structures such as microinductors, microtransformers and stents are described. A chemically active agent such as a catalyst is applied from an applicator in a pattern to an exterior surface of an article, metal is deposited according to the pattern and optionally, removed from the substrate. Where the substrate is cylindrical, the pattern can serve as a stent. Alternatively, a pattern of a self-assembled monolayer can be printed on a surface, which pattern can dictate metal plating or etching resulting in a patterned metal structure that can be cylindrical. In another embodiment, a structure is patterned on a surface that serves as a phase-modulating pattern or amplitude-modulating pattern. The article subsequently is exposed to radiation that can induce a change in refractive index within the article, and the phase-modulating or amplitude-modulating pattern results in different indices of refraction being created in different portions of the article. By this technique, a grating can be written into a core of an optical fiber.
Abstract:
An apparatus (95) and method for patterning a surface of an article (30), the apparatus (95) including a large-area stamp (50) for forming a self-assembled monolayer (36) (SAM) of a molecular species (38) on the surface (34) of a layer (32) of resist material, which is formed on the surface of the article (30). The large-area stamp (50) includes a layer (52) of an elastomer and has, embedded within it, mechanical structures (68, 80) which stiffen the large-area stamp (50) and deform it to control the stamped patterns. The method includes the steps of: forming a layer (32) of resist material is on the surface of the article (30), utilizing the large-area stamp (50) to form the SAM (36) on the surface (34) of the layer (32) of resist material, etching the layer (32) of resist material, and thereafter etching or plating the surface of the article (30).
Abstract:
A method of patterning a material surface is provided in which an elastomeric stamp having a stamping surface is coated with a self-assembled monolayer forming species having a functional group selected to bind to a particular material, and the stamping surface is placed against a surface of material and is removed to leave a self-assembled monolayer of the species according to the stamping surface pattern of the stamp. Additional stamping steps may be subsequently effected to produce any of a variety of SAM patterns on the surface. Additionally, portions of the material surface that are not coated with a stamped SAM pattern may be filled in with another SAM-forming species. Alternately, portions that are not covered by a SAM layer may be etched or plated. Additionally, an optical switch and other optical devices and elements are provided, comprising articles similar to the inventive stamp.