Abstract:
A method is disclosed for winding a composite strip onto a spool having a hub in which the strip includes a plurality of laterally spaced apart lengthwise extending rib portions upstanding from the base portion. The method comprises the steps of feeding the strip towards the hub of the spool; driving the fed strip through a roller set so as to plastically deform the strip to give it a curved base portion; and winding the deformed strip onto the hub to form spooled strip, the winding creating tension in the strip. The plastic deformation of the strip through the roller set substantially reduces the tension in the strip that would otherwise occur.
Abstract:
A winding apparatus for and method of manufacturing helically wound structures (116) includes a rotating faceplate (74) upon which are mounted a forming station for forming a supply of strip material before it is wound into a desired structure, a plurality of inner supports in the form of rollers (110) mounted for rotation about an axis and with said faceplate and a plurality of outer driven rollers (92) provided on an outer faceplate (118). In operation, the inner rollers act to support an inner portion S1 of strip material wound thereon whilst allowing it to be supplied from an inner diameter thereof to said forming station and the outer rollers (92) act to support an outer portion S2 of said strip. Said outer rollers are driven as and when necessary to transfer material to the inner portion S1.
Abstract:
A method is provided for making a composite laminate aircraft skin for a fuselage in multiple composite panels. A resin-impregnated composite tape is placed on a lay-up surface of a mandrel tool to form the composite laminate aircraft skin as a barrel that is substantially the shape of a fuselage section. The barrel is cut into a plurality of panels on the mandrel tool, and at least one panel of the plurality of panels is transferred, individually and independently of all other of the plurality of panels, from the lay-up surface of the mandrel tool to a first cure tool of a plurality of cure tools having an aero surface tooled to an outer mold line. The at least one of the panels is cured on the first cure tool to form a cured composite panel. The first cure tool defines and controls the outer mold line of the at least one panel. The cured composite panel is removed from the first cure tool.
Abstract:
The invention is directed to a method and apparatus for preferably producing a two layer off-axis composite prepreg material in tape form that has fiber direction at angles such as plus or minus five degrees to the longitudinal direction of the backing paper. The use of such off-axis prepreg composite material tape is primarily for fabricating high length-to-width ration parts such as composite wing stringers or spars for aircraft.
Abstract:
The present invention provides a unitary run flat tire (RFT) reinforcement using filament material that is formed into a relatively rigid shape. The reinforcement is insertable into a mold for an RFT support and can maintain the needed structural rigidity for such insertion. Further, the invention provides an RFT support that is molded and includes the RFT reinforcement. The invention also provides a wheel assembly including a tire, a rim, and an RFT support between the rim and the tire, where the support includes the RFT reinforcement. The RFT support can have a colored indicator formed or subsequently applied thereto to indicate one or more attributes of the support.
Abstract:
A method for the production of curved thread-reinforced tubular structures composed of rubber layers and of strengthening layers and an accompanying device. In one aspect, the method includes the application of a first rubber layer to the circumference of mandrels driven forward in a feed direction (X) and winding on of a multiplicity of parallel reinforcing threads, having defined thread angles (null) with respect to the feed axis (x), by means of a bobbin creel, to form a first thread ply. The mandrels are led through a rotating deflection element surrounding the mandrels and the reinforcing threads are guided so as to be distributed on the inner circumference. An application of a covering rubber layer may be performed (after the optionally multiple execution of the previous steps, alone or in combination). The mandrels are led through the deflection element of the bobbin creel eccentrically in the region of the deflection element.
Abstract:
A fiber reinforced thermoplastic pipe member is obtained by a novel continuous process in which the reinforcement fibers are wrapped about the outer pipe surface in an unbonded condition while the pipe member continuously moves in a linear direction and which is followed by sufficient heating of the moving fiber wrapped pipe member to cause thermal bonding between the applied fibers and the pipe member. Automated apparatus for carrying out the continuous process is also disclosed.
Abstract:
A breathing circuit component includes an inlet, an outlet and an enclosing wall. The enclosing wall defines a gases passageway between the inlet and the outlet. At least a region of the enclosing wall is formed from a breathable material that allows the passage of water vapour without allowing the passage of liquid water or respiratory gases. The breathing circuit component may be the expiratory limb of a breathing circuit.
Abstract:
An ultralow expansion brake rubber hose comprising an inner rubber tube, a first reinforcing layer, a second reinforcing layer and an outer rubber layer, wherein a thermosetting resin which penetrates the reinforcing fibers constituting the first reinforcing layer and which is cured at vulcanizing temperatures is cured by vulcanization to turn the first reinforcing layer into a solid cured layer. By turning the first reinforcing layer into the solid cured layer, the mutual slippage between the reinforcing fibers of the first reinforcing layer can be prevented, and a brake rubber hose having low expansion and excellent durability can be obtained. The rubber hose can be produced by carrying out the continuous steps of braiding a first reinforcing layer around an inner rubber tube, immersing the first reinforcing layer in a thermosetting resin solution capable of penetrating the reinforcing fibers constituting the first reinforcing layer and having low viscosity to cause the thermosetting resin solution to penetrate the reinforcing fibers, braiding a second reinforcing layer, and extruding an outer rubber tube on the external surface of the second reinforcing layer.
Abstract:
A fiber reinforced thermoplastic pipe member is obtained by a novel continuous process in which the reinforcement fibers are wrapped about the outer pipe surface in an unbonded condition while the pipe member continuously moves in a linear direction and which is followed by sufficient heating of the moving fiber wrapped pipe member to cause thermal bonding between the applied fibers and the pipe member. Automated apparatus for carrying out the continuous process is also disclosed.