Abstract:
Fused silica articles exhibiting improved internal transmission and decreased absorption change when irradiated with a laser when compared with fused silica articles containing lower levels of aluminum. The articles also exhibit induced transmission when irradiated with a laser. The articles also exhibit improved off-axis refractive index homogeneity.
Abstract:
The invention relates to a silica yarn and to woven or nonwoven fabrics produced from said yarn, which comprises 30 to 1500 ppm by weight of aluminum and 10 to 200 ppm by weight of titanium in oxidized form, the sum of the mass of the chemical elements different from Si and O being less than 5000 ppm by weight, the following elements being absent or present in a very small quantity: boron, sodium, calcium, potassium and lithium. The fabrics comprising this silica yarn have an excellent high-temperature withstand and thus retain their flexibility for a long time at above 600° C. They are useful especially in uses requiring good high-temperature flexibility, such as for furnace seals.
Abstract:
A preform for a low loss fiber optic cable and method and apparatus for fabricating such a preform is provided. The method includes providing AlCl3 and CVD precursors and locally doping CaCl3. Alkali and/or alkaline earth fluxing agents can be introduced. The alkali and/or alkaline earths are doped along with the aluminum into the silica glass core.
Abstract:
High purity direct deposit vitrified silicon oxyfluoride glass suitable for use as a photomask substrates for photolithography applications in the VUV wavelength region below 190 nm is disclosed. The inventive direct deposit vitrified silicon oxyfluoride glass is transmissive at wavelengths around 157 nm, making it particularly useful as a photomask substrate at the 157 nm wavelength region. The inventive photomask substrate is a dry direct deposit vitrified silicon oxyfluoride glass which exhibits very high transmittance in the vacuum ultraviolet (VUV) wavelength region while maintaining the excellent thermal and physical properties generally associated with high purity fused silica. In addition to containing fluorine and having little or no OH content, the inventive direct deposit vitrified silicon oxyfluoride glass suitable for use as a photomask substrate at 157 nm is also characterized by having less than 1null1017 molecules/cm3 of molecular hydrogen and low chlorine levels.
Abstract:
The present invention relates to a glass article for use as an optical waveguide fiber and more particularly to an optical waveguide fiber, the core of which is doped with a chalcogenide element to significantly increase the refractive index of the core. The subject of this invention is novel doped silica core compositions wherein a portion of the oxygen in the silica is replaced with either sulfur, selenium or tellurium using plasma enhanced chemical vapor deposition (PECVD). These compositions are designed to have higher refractive indices than silica, low coefficients of expansion, high optical transparency, and appropriate viscosity and softening points to make them ideal candidates for use as optical waveguide fibers.
Abstract:
High purity direct deposit vitrified silicon oxyfluoride glass suitable for use as a photomask substrates for photolithography applications in the VUV wavelength region below 190 nm is disclosed. The inventive direct deposit vitrified silicon oxyfluoride glass is transmissive at wavelengths around 157 nm, making it particularly useful as a photomask substrate at the 157 nm wavelength region. The inventive photomask substrate is a dry direct deposit vitrified silicon oxyfluoride glass which exhibits very high transmittance in the vacuum ultraviolet (VUV) wavelength region while maintaining the excellent thermal and physical properties generally associated with high purity fused silica. In addition to containing fluorine and having little or no OH content, the inventive direct deposit vitrified silicon oxyfluoride glass suitable for use as a photomask substrate at 157 nm is also characterized by having less than 1×1017 molecules/cm3 of molecular hydrogen and low chlorine levels.
Abstract:
A process for manufacture of a component made of opaque synthetic quartz glass, and a quartz glass tube manufactured according to said process. The process comprises (i) providing a starting material in the form of granulated material of highly pure, synthetic SiO2 comprising at least partially porous agglomerates of SiO2 primary particles, the granulated material having a compacted bulk density of no less than 0.8 g/cm3, (ii) filling the granulated material into a mold and converting it to an opaque quartz glass preform through a process of melting, and (iii) reshaping the preform in a heat reshaping process to obtain a component made of opaque quartz glass. A quartz glass tube is made of quartz glass consisting of a granulated material of synthetic SiO2 with a lithium content of no more than 100 wt-ppb, and the wall thickness of said component being in the range of 0.5 mm to 15 mm.
Abstract:
A quartz glass which would not become a source for the contamination even if it contains metallic impurities. This quartz glass includes a region where a concentration of E′ center as measured by means of an electron spin resonance analysis is 3×1019 cm−3 or more. This quartz glass can be manufactured by a method including the steps of forming an initial quartz glass by melting and quenching a raw material for quartz glass, and implanting therein an ion, which is capable of entering into an SiO2 network of the initial quartz glass and substantially incapable of externally diffusing, to increase a concentration of E′ center in at least part of the initial quartz glass. This quartz glass can be manufactured by a method making use of a quartz glass raw material containing 0.01 to 0.1% by weight of silicon, by a method of irradiating ultraviolet ray to the initial quartz glass, or by a method of giving an abrasion damage to the surface of the initial quartz glass by means of sand blast.
Abstract:
A synthetic fused silica composition comprising silica and aluminum, wherein said aluminum is generally present in at least 7 parts per million and the composition has a viscosity of at least 1014.5 poise.
Abstract:
A quartz glass which would not become a source for the contamination even if it contains metallic impurities. This quartz glass includes a region where a concentration of E' center as measured by means of an electron spin resonance analysis is 3.times.10.sup.19 cm.sup.-3 or more. This quartz glass can be manufactured by a method including the steps of forming an initial quartz glass by melting and quenching a raw material for quartz glass, and implanting therein an ion, which is capable of entering into an SiO.sub.2 network of the initial quartz glass and substantially incapable of externally diffusing, to increase a concentration of E' center in at least part of the initial quartz glass. This quartz glass can be manufactured by a method making use of a quartz glass raw material containing 0.01 to 0.1% by weight of silicon, by a method of irradiating ultraviolet ray to the initial quartz glass, or by a method of giving an abrasion damage to the surface of the initial quartz glass by means of sand blast.