Abstract:
The present invention consists of a novel process for the incorporation of one or more water-soluble active agents in a hydrophilic polymer foam. Said process makes it possible in particular to obtain a hydrophilic polyurethane foam exhibiting a gradient of active agents. This process is of particular use when manufacturing hydrophilic polyurethane foams intended for medical, cosmetic and dermocosmetic purposes.
Abstract:
A non-crosslinked, gelled carbonaceous composition and a pyrolysed composition respectively forming an aqueous polymer gel and the pyrolysate thereof in the form of porous carbon is provided. Also provided is a production method thereof, to a porous carbon electrode formed by the pyrolysed composition, and to a supercapacitor containing the electrodes. The gelled, non-crosslinked composition (G2) is based on a resin created at least partly from polyhydroxybenzene(s) R and formaldehyde(s) F and comprises at least one hydrosoluble cationic polyelectrolyte P. The composition forms a rheofluidifying physical gel. A pyrolysed carbonaceous composition having a carbon monolith, is the product of coating, crosslinking, drying then pyrolysis of the non-crosslinked gelled composition, the carbon monolith being predominantly microporous and able to form a supercapacitor electrode having a thickness of less than 1 mm.
Abstract:
Provided is a gelled carbon-based composition forming an organic polymeric monolithic gel capable of forming a porous carbon monolith by pyrolysis, a use thereof and a process for preparing this composition. A composition according to the invention is based on a resin derived at least partly from polyhydroxybenzene(s) R and formaldehyde(s) F, has a thermal conductivity of less than or equal to 40 mW·m−1·K−1, and includes at least one water-soluble cationic polyelectrolyte P. A process for preparing this composition comprises: a) polymerization, in an aqueous solvent, of the polyhydroxybenzene(s) and formaldehyde(s), in the presence of at least one cationic polyelectrolyte dissolved in this solvent and of a catalyst, in order to obtain a solution based on the resin, b) gelling of the solution in order to obtain a gel, and c) drying in order to obtain the organic polymeric monolithic gel.
Abstract:
Methods for making wet gels and dried gels therefrom are provided. The method for making a wet gel can include combining a hydroxybenzene compound, an aldehyde compound, and an additive to produce a reaction mixture. The additive can include a carboxylic acid, an anhydride, a homopolymer, a copolymer, or any mixture thereof. At least the hydroxybenzene compound and the aldehyde compound can be reacted to produce a wet gel. The reaction mixture can include about 10 wt % to about 65 wt % of the hydroxybenzene compound, about 5 wt % to about 25 wt % of the aldehyde compound, up to about 85 wt % of the carboxylic acid, up to about 40 wt % of the anhydride, up to about 40 wt % of the homopolymer, and up to about 40 wt % of the copolymer, where weight percent values are based on the combined weight of the hydroxybenzene compound, the aldehyde compound, and the additive.
Abstract:
Polyolefin dispersions, froths, and foams and articles manufactured therefrom are disclosed. Also disclosed is a method for generating a thermoplastic foam from an aqueous dispersion. The aqueous dispersion may include a thermoplastic resin, water, and a stabilizing agent. The method may include adding at least one frothing surfactant to the aqueous dispersion to form a mixture, adding a flame retardant and/or a phase change material, frothing the mixture to create a froth, and removing at least a portion of the water to produce the foam.
Abstract:
By reaction of one or more epoxy resins with an amphiphilic epoxy resin hardener in water in a phase inversion polymerization, nanoporous polymer foams are obtained. These foams are suitable as thermal insulation materials.
Abstract:
A method for producing an aqueous absorptive polymer-containing resin composition in which a resin composition is doped with an aqueous absorptive polymer includes causing the aqueous absorptive polymer to absorb and be swollen by water beforehand, and milling and microparticulating the water-absorbed and -swollen absorptive polymer at an ultrasonic flow pressure of not less than 50 MPa.
Abstract:
A porous cellulose aggregate characterized by having a secondary aggregate structure resulting from aggregation of primary cellulose particles, having a pore volume within a particle of 0.265 to 2.625 cm3/g, containing I-type crystals and having an average particle size of over 30 to 250 μm, a specific surface area of 0.1 to less than 20 m2/g, a repose angle of 25° to less than 44° and a swelling degree of 5% or more, and characterized by having the property of disintegrating in water.
Abstract:
A method for producing an aqueous absorptive polymer-containing resin composition in which a resin composition is doped with an aqueous absorptive polymer includes causing the aqueous absorptive polymer to absorb and be swollen by water beforehand, and milling and microparticulating the water-absorbed and -swollen absorptive polymer at an ultrasonic flow pressure of not less than 50 MPa.