Abstract:
A cord for rubber reinforcement of the present invention includes a core strand including a plurality of strands (A), and a plurality of strands (B) disposed around the core strand. In the core strand, the plurality of strands (A) are finally twisted, and each of the plurality of strands (A) is formed of a plurality of reinforcing fibers (A) that are primarily twisted. Each of the plurality of strands (B) is formed of a plurality of reinforcing fibers (B) that are primarily twisted, and the plurality of strands (B) are finally twisted to be disposed around the core strand. The direction of final twist of the plurality of strands (B) is the same as the direction of primary twist in at least one strand (B) selected from the plurality of strands (B). The number of primary twists in the strand (B) is greater than the number of primary twists in the strand (A), and/or the number of final twists of the strands (B) is greater than the number of final twists of the strands (A).
Abstract:
The disclosed bead cord which is lightweight and inexpensive and high in formability includes an annular core and a wrap wire helically wrapped around the annular core, the annular core being made of a medium carbon steel or an alloy steel having a lower carbon content and containing specific elements in suitable amounts. The diameter dC of alular core satisfies 1.04≦dC/dS≦1.30 where dS is the diameter of the wrap wire. The wrap wire has a coil diameter DS which is 0.5 to 1.3 times diameter DC of an annular shape of the annular core. The annular core may be formed with a plating layer of an Al—Zn alloy or a thick plating layer of Zn, or the annular core may be made of stainless steel.
Abstract translation:公开的轻质且廉价且成型性高的胎圈帘线包括环形芯和围绕环形芯螺旋缠绕的缠绕线,环形芯由中碳钢或具有较低碳含量并含有特定的碳含量的合金钢制成 元素适量。 圆形芯的直径dC满足1.04≦̸ dC / dS≦̸ 1.30其中dS为包裹线的直径。 卷绕线具有线圈直径DS,其为环形芯的环形形状的直径DC的0.5至1.3倍。 环形芯可以由Al-Zn合金的镀层或Zn的厚镀层形成,或者环形芯可以由不锈钢制成。
Abstract:
Stranded composite cables include a single wire defining a center longitudinal axis, a first multiplicity of composite wires helically stranded around the single wire in a first lay direction at a first lay angle defined relative to the center longitudinal axis and having a first lay length, and a second multiplicity of composite wires helically stranded around the first multiplicity of composite wires in the first lay direction at a second lay angle defined relative to the center longitudinal axis and having a second lay length, the relative difference between the first lay angle and the second lay angle being no greater than about 4°. The stranded composite cables may be used as intermediate articles that are later incorporated into final articles, such as overhead electrical power transmission cables including a multiplicity of ductile wires stranded around the composite wires. Methods of making and using the stranded composite cables are also described.
Abstract:
Elastic metal/textile composite cord (C-1) having two layers (Ci, Ce) of 1+N construction, formed from a core or inner layer (Ci) comprising a textile core thread (10) of diameter d1 and a metal outer layer (Ce) of N wires (12) of diameter d2 wound together in a helix with a pitch p2 around the layer Ci, said cord being characterized in that it has the following characteristics (p2 in mm): As>1.0%; At>4.0%; Af>6.0%; d1>1.1d2; 4
Abstract:
A cord for rubber reinforcement of the present invention includes a core strand including a plurality of strands (A), and a plurality of strands (B) disposed around the core strand. In the core strand, the plurality of strands (A) are finally twisted, and each of the plurality of strands (A) is formed of a plurality of reinforcing fibers (A) that are primarily twisted. Each of the plurality of strands (B) is formed of a plurality of reinforcing fibers (B) that are primarily twisted, and the plurality of strands (B) are finally twisted to be disposed around the core strand. The direction of final twist of the plurality of strands (B) is the same as the direction of primary twist in at least one strand (B) selected from the plurality of strands (B). The number of primary twists in the strand (B) is greater than the number of primary twists in the strand (A), and/or the number of final twists of the strands (B) is greater than the number of final twists of the strands (A).
Abstract:
A pneumatic tire comprises a cord-reinforced layer such as carcass, belt, bead reinforcing layer which is made of metallic cords, each metallic cord is made up of six to twelve metallic filaments whose diameter is in a range of from 0.15 to 0.45 mm, the metallic filaments include waved filaments and unwaved filaments, each waved filament is two-dimensionally waved at a wave pitch and wave height before twisted, the wave pitch is in a range of from 5.0 to 35.0 times the diameter of the filament, and the wave height is in a range of from 0.2 to 4.0 times the diameter of the filament, and the metallic filaments are twisted together into the cord at a twist pitch of from 10 to 40 mm so that the two-dimensionally waved filaments are each subjected to a certain rotation around its axial.
Abstract:
The durability is improved by using as a carcass ply cord or a belt cord of a tire a cord formed by twisting plural steel filaments having a tensile strength of not less than 2700 N/mm2, and a total elongation at break of the cord of 3.0-7.0% without sacrificing the excellent ride comfort.
Abstract translation:通过使用作为胎体帘布层帘线或轮胎的带束帘线,通过使用拉伸强度为2700N / mm 2以上的多根钢丝卷曲而形成帘线,耐久性提高,总共 线的断裂伸长率为3.0-7.0%,而不牺牲极好的乘坐舒适度。
Abstract:
The invention relates to a composite cord (10) for reinforcement of elastomers comprising a core (12) of a high polymer material, a first layer of steel filaments (14) twisted around said core and a second layer of steel filaments (16) twisted around said first layer. The polymer material is present in a sufficient volume to create gaps between adjacent filaments of the first layer and possibly also between the filaments of the second layer. The composite cord is characterized by a decreased fretting of the steel filaments.
Abstract:
A steel cord (10) for the reinforcement of timing belts or transmission belts comprises only two to five strands (12) tightly twisted with each other in a first direction at a cord twisting pitch. Each of said strands (12) comprises only two to seven steel filaments (14) tightly twisted with each other in this first direction at a strand twisting pitch. The steel filaments (14) have a diameter ranging from 0.03 to 0.40 mm. The ratio strand twisting pitch to filament diameter is greater than 30, the ratio cord twisting pitch to filament diameter is greater than 30, and the ratio cord twisting pitch to strand twisting pitch is greater than 1. Such a steel cord has an acceptable low torsion moment under axial loads.
Abstract:
A steel cord comprising a number (between 3 and 27) of element steel wires tightly twisted at a regular pitch P between 5 and 20 mm in the same direction. Each wire has a diameter d between 0.1 and 0.4 mm. At least one of the wires includes a spiral portion having a spiral pitch P1 between 0.1P and 0.7P and a spiral diameter d1 between d+2/100 mm and d+2/10 mm. At least one other wire includes a straight portion. At any cross section of the cord, 1/4 through 2/3 of the wires is/are spiral and the other wire/s is/are straight. The stretch of the cord under a load of 5 kg is between 0.10 and 0.40%. A method of producing a steel cord comprises supplying a number of element steel wires, forming at least part of at least one of the wires to be spiral, and tightly twisting the wires. An apparatus for producing a steel cord comprises feeders supported by a frame, each feeding an element steel wire along an axis, a tension device for applying a tension to the wire from at least one of the feeders, a spiral device having pins which extend across and are spaced along an axis, so that at least one of the wires from the tension device turns alternately over and under the pins, a strand device rotatable on the axis, so that the wires are twisted to form a strand, and a take-up device to take up the strand.