Abstract:
The present invention provides a metallic cord for reinforcing a tire moldable in a tire manufacturing step without complicating operations and keeping strength by reducing rusting and an excellent pneumatic tire employing the metallic cord.The inventive metallic cord for reinforcing a tire is formed by shaping a bundle prepared by paralleling a plurality of metallic wires having substantially circular sections in an unstranded state with a binder of a polymer material having a melting point of 50° C. to 200° C. The polymer material is preferably low-density polyethylene or medium-density polyethylene. The diameters of the metallic wires are preferably 0.15 to 0.3 mm.
Abstract:
A steel cord is composed of three to six steel filaments each having a filament diameter of from 0.25 to 0.45 mm, the three to six steel filaments including shaped filaments and twisted together, wherein the shaped filaments are, before twisted together, coiled to be set in a form of coil having a coil diameter of less than 5 mm and a coil pitch of more than 5 mm, the shaped filaments include at least two kinds of shaped filaments which are different in respect of the form of coil, the shaped filaments are twisted together while the coil diameter is reduced, the elongation of the cord at 50 N load is less than 0.2%, and the cord strength is in a range of from 2500 to 3500 N/sq.mm.
Abstract:
A pneumatic tire comprises a carcass ply of cords extending between bead portions through a tread portion and sidewall portions, the carcass cords include main cords for reinforcing purpose and auxiliary cords for controlling the outflow of topping rubber during vulcanization, the main cords and auxiliary cords are arranged alternately in the tire circumferential direction, and the number of auxiliary cord(s) between the main cords is in a range of from one to three.
Abstract:
A method for making a metallic cord made up of one or more metallic wires comprises: making at least two layers of at least two metallic elements including copper and zinc on the surface of a base wire; heating the layers to cause the metallic elements thermodiffusion to transform into a primary alloy layer; making a layer of copper on the primary alloy layer; drawing the wire provided with the primary alloy layer and outer copper layer into a metallic wire through dies so that the outer copper layer is diminished during passing through the dies, and a secondary alloy layer is formed as a result of transformation of the primary alloy layer and the outer copper layer which is caused by frictional heat during passing through the dies.
Abstract:
A pneumatic tire comprises a carcass extending between the bead portions and a band disposed radially outside the carcass in a tread portion and made of at least one cord laid at an angle of not more than 5 degrees with respect to the tire equator, and the band cord is made of steel filaments twisted together so as to have a variable elasticity modulus which has a transitional point from under 1000 kgf/sq.mm to over 1000 kgf/sq.mm at an elongation percentage in a range of from 1% to 5%. Preferably, the average elasticity modulus ELn of the cord from zero elongation to the transitional point is in a range of from 500 to 750 kgf/sq.mm, and the average elasticity modulus EHn of the cord from the transitional point to a breaking point of the cord is in a range of from 1200 to 3000 kgf/sq.mm.
Abstract:
The invention improves rubber permeability while making a cord diameter compact. A metal cord is constituted by a layered structure having a core comprising totally 6 to 12 filaments sectioned into 1 to 4 filament bundles, and a sheath comprising 8 to 15 filaments arranged around the core. Each of the filament bundles includes a waved filament modeled in a two-dimensional wave shape and a non-waved filament, in a state before being bundled. The core makes the wave of the waved filament three-dimensional within the core by applying torsion to each of the filament bundles.
Abstract:
A cord for reinforcing a tire formed by shaping a bundle prepared by paralleling a plurality of metallic wires having substantially circular sections in an unstranded state with a binder of a polymer material having a melting point of 50° C. to 200° C. The polymer material is preferably low-density polyethylene or medium-density polyethylene. The diameters of the metallic wires are preferably 0.15 to 0.3 mm.
Abstract:
A pneumatic tire comprises a cord-reinforced layer such as carcass, belt, bead reinforcing layer which is made of metallic cords, each metallic cord is made up of six to twelve metallic filaments whose diameter is in a range of from 0.15 to 0.45 mm, the metallic filaments include waved filaments and unwaved filaments, each waved filament is two-dimensionally waved at a wave pitch and wave height before twisted, the wave pitch is in a range of from 5.0 to 35.0 times the diameter of the filament, and the wave height is in a range of from 0.2 to 4.0 times the diameter of the filament, and the metallic filaments are twisted together into the cord at a twist pitch of from 10 to 40 mm so that the two-dimensionally waved filaments are each subjected to a certain rotation around its axial.
Abstract:
A pneumatic tire comprises a carcass extending between bead portions through a tread portion and sidewall portions, and a belt disposed radially outside the carcass in the tread portion, wherein at least one of the carcass and the belt is reinforced with aliphatic polyketone fiber cords having specific characteristics.
Abstract:
The present invention provides a metallic cord for reinforcing a tire moldable in a tire manufacturing step without complicating operations and keeping strength by reducing rusting and an excellent pneumatic tire employing the metallic cord. The inventive metallic cord for reinforcing a tire is formed by shaping a bundle prepared by paralleling a plurality of metallic wires having substantially circular sections in an unstranded state with a binder of a polymer material having a melting point of 50° C. to 200° C. The polymer material is preferably low-density polyethylene or medium-density polyethylene. The diameters of the metallic wires are preferably 0.15 to 0.3 mm.