Abstract:
Embodiments of the present invention relate to compressed gas storage units, which in certain applications may be employed in conjunction with energy storage systems. Some embodiments may comprise one or more blow-molded polymer shells, formed for example from polyethylene terephthalate (PET) or ultra-high molecular weight polyethylene (UHMWPE). Embodiments of compressed gas storage units may be composite in nature, for example comprising carbon fiber filament(s) wound with a resin over a liner. A compressed gas storage unit may further include a heat exchanger element comprising a heat pipe or apparatus configured to introduce liquid directly into the storage unit for heat exchange with the compressed gas present therein.
Abstract:
A pressurizable gas reservoir can include a first end member and a second end member that is disposed in longitudinally-spaced relation to the first end member. A flexible reservoir member can extend between opposing first and second ends. The first end secured to the first end member and the second end secured to the second end member. The flexible reservoir member at least partially defines a reservoir chamber between the first and second end members that is capable of storing a quantity of pressurized gas for an extended duration of time. The first and second end members can be maintained in substantially-fixed axial position relative to one another. A suspension system including such a pressurized gas reservoir and a method of assembly are also included.
Abstract:
An article is provided that can be used as a heating source for various applications. The article includes an environmentally friendly gaseous fuel mixture within a gas cylinder that is both non-corrosive and refillable. More specifically, the gaseous fuel mixture contains hydrogen and methane. Methods of using the article as a heating source are also provided.
Abstract:
A system for storing natural gas comprises a plurality of straight sections of tube. The plurality of straight sections of tube are dense packed. The plurality of straight sections of tube are configured to fill a designated volume.
Abstract:
Method of producing a composite pressure vessel (1) having an inner vessel (4) made of thermoplastic material, having at least one end piece (6) provided in a neck region (2), and having a wrapping (5) which reinforces the inner vessel (4) and is made of a fibre material, wherein the method includes production of the inner vessel (4) by extrusion blow moulding and the end piece (6), while the inner vessel is being shaped, is formed on the inner vessel such that the end piece (6) is at least partially enclosed by the inner vessel (4).
Abstract:
An article is provided that can be used as a heating source for various applications. The article includes an environmentally friendly gaseous fuel mixture within a gas cylinder that is both non-corrosive and refillable. More specifically, the gaseous fuel mixture contains hydrogen and methane. Methods of using the article as a heating source are also provided.
Abstract:
A pressure vessel is provided including an inner tank formed from a tank liner surrounded by a wound layer of composite filaments. A protective jacket is disposed on the inner tank that facilitates stacking and portability of the pressure vessel and helps to define an air passage for convective heat transfer between the hybrid tank and the environment.
Abstract:
A pressure vessel having reduced weight while satisfying required design conditions has polygonal upper and bottom walls, a side wall between the upper and bottom walls, an upper curved surface portion connecting the upper wall's peripheral edge and the side wall's upper end wall by curved surfaces convexed outward, and a lower curved surface portion connecting the bottom wall's peripheral edge and the side wall's lower end by curved surfaces convexed outward. The upper wall center portion is thicker than the upper curved surface portion, which is thicker than an upper wall annular portion formed between the upper wall center portion and the upper curved surface portion. The bottom wall center portion is thicker than the lower curved surface portion, which is thicker than a bottom wall annular portion formed between the bottom wall center portion and the lower curved surface portion.
Abstract:
An article is provided that can be used as a heating source for various applications. The article includes an environmentally friendly gaseous fuel mixture within a gas cylinder that is both non-corrosive and refillable. More specifically, the gaseous fuel mixture contains hydrogen and methane. Methods of using the article as a heating source are also provided.
Abstract:
Disclosed is a vessel including an outer shell and an inner shell, the inner shell having spaced apart indentations formed therein to facilitate a thermal expansion and contraction of the inner shell to militate against failure thereof.