Abstract:
Disclosed is a high-speed and low-power pipelined analog-digital converter (ADC) using a dynamic reference voltage and a 2-stage S/H. The pipelined ADC includes a 2-stage sample-and-hold (S/H) configured to secure a conversion time corresponding to a clock cycle per stage and to apply only a buffer to an input signal path, a reference voltage generator configured to receive the output of the D flip-flop of a previous stage as an input signal and to generate a required reference voltage during a half cycle of a sample frequency, and a comparator configured to include a linear transconductor (LT), a rail-to-rail latch (R2R) and a D flip-flop and to generate the output of the ADC and input to the reference voltage generator of a next stage for generating a reference voltage using the output of the D flip-flop.
Abstract:
An analog-to-digital converter (110) for an imaging device comprises an analog signal input (123) for receiving an analog signal from a pixel array of the imaging device and N ramp signal inputs (121, 122) for receiving N ramp signals, where N is an integer≥2. The N ramp signals have different slopes. The ADC has a clock input (143) for receiving at least one clock signal. A comparison stage (120) is connected to the ramp signal inputs and to the analog signal input. The comparison stage (120) is configured to compare the ramp signals with the analog signal to provide comparison outputs during the conversion period. A control stage (130) is configured to control a counter stage (140) based on the comparison outputs and a selection input indicative of when at least one handover point has been reached during the conversion period.
Abstract:
The present invention relates to nonlinear signal processing, and, in particular, to adaptive nonlinear filtering of real-, complex-, and vector-valued signals utilizing analog Nonlinear Differential Limiters (NDLs), and to adaptive real-time signal conditioning, processing, analysis, quantification, comparison, and control. More generally, this invention relates to methods, processes and apparatus for real-time measuring and analysis of variables, and to generic measurement systems and processes. This invention also relates to methods and corresponding apparatus for measuring which extend to different applications and provide results other than instantaneous values of variables. The invention further relates to post-processing analysis of measured variables and to statistical analysis. The NDL-based filtering method and apparatus enable improvements in the overall properties of electronic devices including, but not limited to, improvements in performance, reduction in size, weight, cost, and power consumption, and, in particular for wireless devices, NDLs enable improvements in spectrum usage efficiency.
Abstract:
A process variable transmitter is used to measure a process variable, and, in doing so, dynamically changes the resolution of the A/D converter based upon the measured value of the analog input signal. This can be done by automatically adjusting the configurable resolution gain adjustment based on the value of the analog signal being measured, by normalizing the input signal being measured so that it is centered in an optimal resolution window of the A/D converter, or by adjusting a voltage reference provided to the A/D converter.
Abstract:
The present disclosure provides for an analog-to-digital converter (ADC) which selectively compresses an analog input signal to improve noise performance and dynamic input range. The ADC selectively scales an analog input signal when it is closer to an expected value of one or more signal metrics more than when it is further from the expected value of the one or more signal metrics. For example, during the conversion process, the ADC amplifies the analog input signal when it is closer to a mean value μ by a gain factor while selectively adjusting the gain factor when the analog input signal is further from its mean value μ to selectively compress the analog input signal. This selective compression improves input noise performance and dynamic input range of the ADC when compared to the conventional ADC.
Abstract:
A controlling console for moving elements such as trusses and winches. A console body has a display screen, and a processor which is programmed to produce an output screen on the display screen which accepts controls for controlling at least one movable device. The output screen includes a plurality of different logical blocks which are connected together. Values and conditions such as true, false, rising edge or error can be entered. The console arranges this into a flow arrangement.
Abstract:
A method of adaptively and losslessly quantizing an analog signal to a digital signal in an analog-to-digital converter (ADC), is disclosed. According to one embodiment, the quantizing is based on one or more of an instantaneous amplitude of the analog signal, frequencies of the analog signal, and patterned contents of the analog signal, and the method comprises sampling the analog signal; quanitizing the analog signal by a quantizer core, wherein the quantizer core comprises a digital-to-analog converter (DAC), a comparator, and a voltage reference, wherein the quantization is one of efficient lossless and adaptive compression quantization, or a traditional quantization method; determining by an analog compression engine (ACE) whether the sampled analog signal is above or below a defined threshold, wherein the defined threshold includes one or more of an amplitude threshold, a frequency threshold, and a patterned adaptive threshold; adaptively manipulating the sampled signal mathematically through at least one of the DAC or voltage reference of the quantizer core; and outputting the digital signal.
Abstract:
An analog-to-digital conversion device and a method thereof are provided. The analog-to-digital conversion device includes a first level adjustment unit, an analog-to-digital converter (ADC), and a linear range detection unit. The ADC converts a test signal or a first input signal to generate a test data stream or a first output data stream. In an adjustment mode, the linear range detection unit obtains a conversion curve of the ADC by using the test data stream and determines whether to adjust offset control information according to a linear range of the conversion curve. In an operation mode, the linear range detection unit continues outputting the offset control information. Additionally, before transmitting the first input signal, the first level adjustment unit adjusts a direct-current level of the first input signal according to the offset control information to allow the first input signal to be within the linear range of the conversion curve.
Abstract:
An analog-to-digital converter (ADC) implements non-uniform conversion accuracy so as to allow for high conversion accuracy for a select narrower input range while also accommodating a wider overall input range and requiring fewer conversion bits compared to conventional ADCs. The ADC includes an ADC core that receives an input signal and outputs a first digital value having a first number of bits, the first digital value based on the input signal and an accuracy configuration of the ADC core. The ADC also includes an encoder to generate a second digital value have a second number of bits, greater than the first number of bits, based on the first digital value and the accuracy configuration of the ADC core. The ADC further includes an accuracy controller to adjust the accuracy configuration of the ADC core based on a relationship between the first digital value and at least one threshold.
Abstract:
A method of adaptively and losslessly quantizing an analog signal to a digital signal in an analog-to-digital converter (ADC), is disclosed. According to one embodiment, the quantizing is based on one or more of an instantaneous amplitude of the analog signal, frequencies of the analog signal, and patterned contents of the analog signal, and the method comprises sampling the analog signal; quanitizing the analog signal by a quantizer core, wherein the quantizer core comprises a digital-to-analog converter (DAC), a comparator, and a voltage reference, wherein the quantization is one of efficient lossless and adaptive compression quantization, or a traditional quantization method; determining by an analog compression engine (ACE) whether the sampled analog signal is above or below a defined threshold, wherein the defined threshold includes one or more of an amplitude threshold, a frequency threshold, and a patterned adaptive threshold; adaptively manipulating the sampled signal mathematically through at least one of the DAC or voltage reference of the quantizer core; and outputting the digital signal.