Abstract:
Provided herein are high energy ion beam generator systems and methods that provide low cost, high performance, robust, consistent, uniform, low gas consumption and high current/high-moderate voltage generation of neutrons and protons. Such systems and methods find use for the commercial-scale generation of neutrons and protons for a wide variety of research, medical, security, and industrial processes.
Abstract:
The disclosure includes an outer electrode and an inner electrode. The outer electrode defines an inner volume and is configured to receive injected electrons through at least one aperture. The inner electrode positioned in the inner volume. The outer electrode and inner electrode are configured to confine the received electrons in orbits around the inner electrode in response to an electric potential between the outer electrode and the inner electrode. The apparatus does not include a component configured to generate an electron-confining magnetic field.
Abstract:
Accurate mass measurement is carried out for product ions of a sample. A method for accurate mass determination of ions with Trap-TOF/μs includes steps of generating ions of an analyte sample and a standard material; introducing the ions of the analyte sample and the standard material together into an ion trap to trap them; selecting a precursor ion from the ions of the analyte sample to leave the precursor ion and a standard material ion in the ion trap and eliminate other ions; exciting and dissociating the precursor ion to generate product ions; ejecting the precursor ion, its product ions, and the standard material ion trapped in the ion trap to introduce these ions into the TOF mass spectrometer; and measuring a mass spectrum with the TOF mass spectrometer, where correction for accurate masses of the product ions is carried out based on the standard material ion measured.
Abstract:
An ionization gauge for isolating an electron source from gas molecules includes the electron source for generating electrons, a collector electrode for collecting ions formed by the impact between the electrons and gas molecules, and an electron window which isolates the electron source from the gas molecules. The ionization gauge can have an anode which defines an anode volume and retains the electrons in a region of the anode. The ionization gauge can have a plurality of electron sources and/or collector electrodes. The collector electrode(s) can be located within the anode volume or outside the anode volume. The ionization gauge can have a mass filter for separating the ions based on mass-to-charge ratio. The ionization gauge can be a Bayard-Alpert type that measures pressure or a residual gas analyzer that determines a gas type.
Abstract:
The invention provides, inter alia, methods of extracting an analyte from a solution comprising the steps of: passing a solution containing an analyte through an extraction channel having a solid phase extraction surface, whereby analyte adsorbs to the extraction surface of said extraction channel; and eluting the analyte by passing a desorption solution through the channel, wherein the method includes a step wherein a multiple-pass solution is passed through at least some substantial portion of the extraction channel at least twice. Non-limiting examples multiple-pass solutions include a solution containing an analyte, a wash solution and/or a desorption solution.