Abstract:
The present invention is directed to systems and methods for dental applications that allow for cost effective, expedient surgical, microsurgical, cosmetic and diagnostics procedures. The system includes a console with no optical connector in it for high optical power and one or more handpiece assemblies detachably connected with the console via electrical connectors. The converter of electrical power to optical power is made as a semiconductor converter, such as a light emitting diode, a diode laser, a diode pumped solid state laser, a diode pumped fiber laser, and the like. The elements of the semiconductor converter in the embodiments of the invention are capable of being positioned in different parts of the handpiece assembly. In one embodiment, the console is adaptive and is capable of executing an executable code stored in a handpiece during its manufacture enabling corresponding performance of the system.
Abstract:
An apparatus for treatment of dental tissue has a first laser source optically connected to a first channel and the same first laser source optically connected to a second channel. The second laser source is optically connected to the first channel. That second laser source is designed to be pumped via the first channel by the diode laser to generate a power of radiation sufficient to cut hard dental tissue. The second channel is connected to a device for treatment of soft dental tissue and is designed to transmit radiation sufficient for treating soft dental tissue. The first laser source can be a diode laser designed to emit radiation of a wavelength selected from a range of 700 nm to 2700 nm. The second laser source can be a solid-state or fiber laser designed to emit a wavelength from a range of 2700 nm to 3000 nm.
Abstract:
A method and apparatus are provided for processing a hard material, for example a hard biological material such as dental enamel or bone, with optical radiation. A treatment zone of the material is selectively cleaned of ablation products and other dirt to enhance processing efficiency, and a tip through which the optical radiation is applied to the treatment zone of the hard material is spaced slightly from the treatment zone during at least a portion of the time that hydrating fluid is being applied to the zone and/or while air or another gas is applied to the zone to clean the surface thereof.
Abstract:
The invention relates to methods and apparatus for processing biological tissue and dental materials which involves providing or distributing a substance containing abrasive particles to an area in front of at least a portion of a surface of the tissue/material and irradiating both the substance and the portion of the surface with light from a selected source, the light being selected and delivered in a manner such that selective ablation is caused on the substance sufficient to force the abrasive particles under a selected pulse against the portion of the surface. Ablation may be of the particles themselves or the particles may be contained within a shell, with ablation being of the shell. The substance is preferably delivered as a series of distribution pulses with the light being delivered either continuously or as light pulses having a predetermined relationship to the distribution pulses.
Abstract:
A surgical device based on the concept of controlling the laser power during laser surgery based on optical and other signals from the tip and the tissue is described. A laser surgical system generally comprises several basic components, such as a laser, a delivery system, a tip and a control system. A tip may be considered as a particular case of a thermo-optical tip (TOT). TOT is an optical and mechanical element which could be used to modify or treat soft and hard tissues, including cutting, coagulation, vaporization, carbonization, and ablation of tissues.
Abstract:
A laser induced thermo-acoustical system has a waveguide for propagating laser radiation to an absorbing layer of a tip. The tip has an absorbing layer serving to absorb the laser radiation propagating through the waveguide. The absorbing layer has such an absorption coefficient that upon absorbing the laser radiation the absorbing layer heats up to boil a quantity of a liquid when the tip is surrounded by the liquid. A laser induced thermo-acoustical method calls for providing a waveguide for propagating laser radiation to the absorbing layer of the tip to be at least partially absorbed by the absorbing layer and to boil a quantity of the liquid surrounding the tip and generating the stream of liquid. The laser induced thermo-acoustical streaming of the liquid is used, in particular, for the treatment of a root canal and periodontal pockets.
Abstract:
A method comprises creating a predetermined pattern of treatment microzones in oral tissue affected by a condition, applying energy of predetermined characteristics to the soft tissue through a tip being limited by at least one dimensional feature of the oral tissue. The application of energy to the oral tissue after creating the predetermined pattern of treatment microzones in the oral soft tissue is terminated. A type of the energy and the characteristics of the predetermined pattern of treatment microzones are defined by the condition in the soft tissue. The condition in the oral tissue can be a gingival recession, gingivitis, periodontal disease, xerostomia, black triangle disease, and interdental/interimplant papilla deficiencies. The oral tissue can be oral soft tissue, such as oral mucosa soft tissue or a gingival soft tissue.
Abstract:
A surgical device based on the concept of controlling the laser power during laser surgery based on optical and other signals from the tip and the tissue is described. A laser surgical system generally comprises several basic components, such as a laser, a delivery system, a tip and a control system. A tip may be considered as a particular case of a thermo-optical tip (TOT). TOT is an optical and mechanical element which could be used to modify or treat soft and hard tissues, including cutting, coagulation, vaporization, carbonization, and ablation of tissues.
Abstract:
An apparatus for treatment of dental tissue has a first laser source optically connected to a first channel and the same first laser source optically connected to a second channel. The second laser source is optically connected to the first channel. That second laser source is designed to be pumped via the first channel by the diode laser to generate a power of radiation sufficient to cut hard dental tissue. The second channel is connected to a device for treatment of soft dental tissue and is designed to transmit radiation from the diode laser sufficient for treating soft dental tissue. In that apparatus the first laser source can be a diode laser designed to emit radiation of a wavelength selected from a range of 700 nm to 2700 nm. The second laser source can be a solid-state or fiber laser designed to emit a wavelength from a range of 2700 nm to 3000 nm.