Abstract:
The invention relates to studies of internal structures of objects with the aid of optical means. According to the invention an optical system (15) of the delivering device for low coherence optical radiation, in a particular embodiment, an optical fiber probe (8), includes at least two lens components (19), (20), which have a positive focal power and are positioned substantionally confocally. This ensures a constant propagation time for the low coherence optical radiation propagating from a given point of the transverse scanning surface (28) or (39) to a corresponding conjugate point of the image plane (22). That provides elimination of the transverse scanning related aberration of the optical path length for low coherence optical radiation directed towards the object (11) both for a flat transverse scanning surface (28) and for a transverse scanning surface (39) having a curvature. In another embodiment, together with the substantionally confocal arrangement of lens components (19), (20), the longitudinal scanning is performed by varying the optical path length for the low coherence optical radiation propagating from the transverse scanning surface (28) to the optical system (15), i.e., from the end face (17) of the distal part (18) of the optical fiber (14) to the optical system (15). To achieve this, a device for longitudinal scanning (10) is incorporated into the optical fiber probe (8). This ensures a corresponding shift of the focusing position of the low coherence optical radiation during longitudinal scanning, i.e., allows for alignment of the focusing position of the low coherence optical radiation with the position of the coherence gate and, consequently, their simultaneous movement.
Abstract:
An optical measurement device calibration tool includes an optical probe suitable for calibrating various optical imaging devices, for example, low coherence reflectometers and optical coherence tomography devices. In a preferred embodiment the calibration tool comprises a container containing a calibration substance with stable optical scattering and absorption properties. The calibration substance includes a gel, paste or grease substance and is covered a protective seal, which is at least partially transparent providing optical contact between the optical probe and the calibration substance. The protective seal is covered with a viscous complementary material. Another protective seal made at least partially removable is placed above the viscous complementary material and may serve as a cover for the container. The calibration tool maintains the advantages of calibration tools using liquids and solid states as calibration substance and is more cost-effective and more convenient for calibrating optical measuring devices such as in medical applications.
Abstract:
In a method for in vivo diagnostics of a biological tissue covered with epithelium an image of the biological tissue is acquired with the aid of a beam in the visible or near IR range directed towards a biological tissue by visualizing the intensity of optical radiation backscattered by the biological tissue. The basal membrane of said biological tissue, which separates the epithelium from an underlying stroma, is identified in the acquired image and diagnostics is performed on basis of the form of the basal membrane. For diagnostics of biological tissue lining the surface of cavities and internal organs of a patient a miniature optical fiber probe is inserted into the patient's cavity. The probe may be placed at a distal end of an endoscope instrumental channel. Acquired images show that a biological tissue covered with healthy epithelium has a smooth basal membrane, which separates stratified squamous epithelium from underlying connective tissue, while pathological regions of biological tissue are characterized by a change in the shape of the basal membrane, or violation of its integrity, or its absolute destruction. Using low coherent optical radiation for implementing the developed method ensures high spatial in-depth resolution.
Abstract:
Common path frequency domain optical coherence reflectometry/tomography devices include a portion of optical fiber with predetermined optical properties adapted for producing two eigen modes of the optical radiation propagating therethrough with a predetermined optical path length difference. The two replicas of the optical radiation outgoing from the portion of the optical fiber are then delivered to an associated sample by an optical fiber probe. The tip of the optical fiber serves as a reference reflector and also serves as a combining element that produces a combination optical radiation by combining an optical radiation returning from the associated sample with a reference optical radiation reflected from the reference reflector. The topology of the devices allows for registering a cross-polarized or a parallel-polarized component of the optical radiation reflected or backscattered from the associated sample. Having the optical path length difference for the two eigen modes of the optical radiation (which is an equivalent of an interferometer offset in previously known devices) differ from the reference offset in the devices of the present invention allows for relieving the requirements to the spectral resolution of the FD OCT engine and/or data acquisition and processing system, and substantially eliminates depth ambiguity problems.
Abstract:
Polarization-sensitive optical coherence devices for obtaining birefringence information are presented. The polarization state of the optical radiation outgoing from the optical radiation source is controlled such that the polarization state of the optical radiation incident on a sample has a 45 degrees angle with respect to the anisotropy axis of the sample. A combination optical radiation is produced in a secondary interferometer by combining a sample portion with a reference portion of optical radiation reflected from a tip of an optical fiber of the optical fiber probe. Subject to a preset optical path length difference of the arms of the secondary interferometer, a cross-polarized, and/or a parallel-polarized component of the combined optical radiation, are selected. Time domain and frequency domain registration are provided. The performance of the device is substantially independent from the orientation of the optical fiber probe with respect to the sample.
Abstract:
A forward looking optical fiber probe includes an optoelectronic lateral scanner that provides circular scanning using a single pass-through optical motor and a single rotating deflector. The optical fiber is kept stationary while circular scanning is provided by an optically transparent rotating deflector intersected by the optical radiation. The arrangement allows for hermetically sealing the optical fiber probe for disinfection, sterilization and clinical use in a clean environment in general. The design is suited to be used in a miniature forward looking optical fiber probe and has a potential for advanced manufacturing and assembling process.
Abstract:
Provided are common path frequency domain and time domain OCT systems and methods that use non-specular reference reflection for obtaining internal depth profiles and depth resolved images of samples. Further provided is a delivering device for optical radiation, preferably implemented as an optical fiber probe with a partially optically transparent non-specular reflector placed in the vicinity of an associated sample. High frequency fringes are substantially reduced and a stable power level of the reference reflection is provided over the lateral scanning range. The partially optically transparent non-specular reflector is implemented as a coating placed on the interior surface of the optical probe window including spots of a metal, or a dielectric coating, separated by elements of another coating or just spaces of a clean substrate. In an alternative embodiment, the scattering elements are made 3-dimensional, having, for example, a spherical shape.
Abstract:
Common path frequency domain optical coherence reflectometry/tomography devices with an additional interferometer are suggested. The additional interferometer offset is adjusted such, that it is ether less than the reference offset, or exceeds the distance from the reference reflector to the distal boundary of the longitudinal range of interest. This adjustment allows for relieving the requirements to the spectral resolution of the frequency domain optical coherence reflectometry/tomography engine and/or speed of the data acquisition and processing system, and eliminates depth ambiguity problems. The new topology allows for including a phase or frequency modulator in an arm of the additional interferometer improving the signal-to-noise ratio of the devices. The modulator is also capable of substantially eliminating mirror ambiguity, DC artifacts, and autocorrelation artifacts. The interference signal is produced either in the interferometer or inside of the optical fiber probe leading to the sample.
Abstract:
Polarization sensitive common path OCT/OCR devices are presented. Optical radiation from a source is converted into two cross-polarized replicas propagating therethrough with a predetermined optical path length difference. The two cross-polarized replicas are then delivered to an associated sample by a delivering device, which is, preferably, an optical fiber probe. A combination optical radiation is produced in at least one secondary interferometer by combining a corresponding portion of an optical radiation returning from the associated sample with a reference optical radiation reflected from a tip of an optical fiber of the optical fiber probe. Subject to a preset optical path length difference of the arms of the at least one secondary interferometer, a cross-polarized component, and/or a parallel-polarized component of the combined optical radiation, are selected. The topology of the devices allows for time domain, as well as for frequency domain registration.