Abstract:
Cellulosic fibers having enhanced reversible thermal properties and applications of such cellulosic fibers are described. In one embodiment, a cellulosic fiber includes a fiber body including a cellulosic material and a set of microcapsules dispersed in the cellulosic material. The set of microcapsules contain a phase change material having a latent heat of at least 40 J/g and a transition temperature in the range of 0° C. to 100° C., and the phase change material provides thermal regulation based on at least one of absorption and release of the latent heat at the transition temperature. The cellulosic fiber can be formed via a solution spinning process, and can be used in various products where thermal regulating properties are desired.
Abstract:
Cellulosic fibers having enhanced reversible thermal properties and methods of forming such cellulosic fibers are described. In one embodiment, a cellulosic fiber includes a fiber body formed of an elongated member. The elongated member includes a cellulosic material and a temperature regulating material dispersed within the cellulosic material. The temperature regulating material includes a phase change material having a transition temperature in the range of −5° C. to 125° C. The cellulosic fiber can be formed via a solution spinning process and can be used in various products where thermal regulating properties are desired. For example, the cellulosic fiber can be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.
Abstract:
A material for energy management and peak energy reduction in a building structure, comprises an insulative base material, a first phase change material, and a functional polymeric phase change material that dynamically absorbs and releases heat to adjust heat transfer. The functional polymeric phase change material has at least one phase change temperature in the range between −10° C. and 100° C. and a phase change enthalpy of at least 5 Joules per gram, the functional polymeric phase change material including a plurality of polymer chains that include a backbone chain and a plurality of side chains, wherein a first portion of the plurality of polymer chains are crosslinked to each other, wherein a second portion of the plurality of polymer chains are crosslinked with the first phase change material and a third portion of the plurality of side chains are mechanically entangled with the inorganic insulative base material.
Abstract:
Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof are described. In one embodiment, a multi-component fiber includes a fiber body formed from a set of elongated members, and at least one of the set of elongated members includes a temperature regulating material having a latent heat of at least 40 J/g. The temperature regulating material provides thermal regulation based on at least one of absorption and release of the latent heat at the transition temperature. The multi-component fiber can be formed via a melt spinning process or a solution spinning process and can be used or incorporated in various products where a thermal regulating property is desired. For example, the multi-component fiber can be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.
Abstract:
An article comprises a substrate and a functional polymeric phase change material bound to the substrate. In some aspects the functional polymeric phase change material is chemically bound to the substrate and can be accomplished by at least one of covalent bonding or electrovalent bonding. The functional polymeric phase change material can comprise a reactive function selected from the group consisting of an acid anhydride group, an alkenyl group, an alkynyl group, an alkyl group, an aldehyde group, an amide group, an amino group and their salts, a N-substituted amino group, an aziridine, an aryl group, a carbonyl group, a carboxy group and their salts, an epoxy group, an ester group, an ether group, a glycidyl group, a halo group, a hydride group, a hydroxy group, an isocyanate group, a thiol group, a disulfide group, a silyl or silane group, an urea group, and an urethane group, and wherein the substrate comprises at least one of cellulose, wool, fur, leather, polyester and nylon. Methods of producing the articles are also disclosed.
Abstract:
A process for manufacturing extrudable/melt spinnable concentrate pellets which contain phase change materials (PCMs), whether the PCMs are micro-encapsulated absorbed into carrier polymers, or non-micro-encapsulated within the concentrate pellets. The polymer matrix within the concentrate pellets can be any thermoplastic polymer or combination of thermoplastic polymers, and the concentrate pellets can then be blended into similar thermoplastic polymers to form mono-filament melt spun fibers, extruded films, injection molded products, etc., or the concentrate pellets can be blended with other thermoplastic polymers to form bi-component or multi-component melt spun fibers, extruded films, injection molded products, etc.
Abstract:
A filter material has one or more plies of fiber layers, in particular for the production of filter bags and filter cones for infused beverages, the at least one fiber layer containing fibers or microcapsules having phase change material. Paraffinic hydrocarbons can be used as the phase change material.
Abstract:
A composition for saturation of preformed, previously cured foam substrates having an at least partially open cell configuration, includes a polymer binder in which microspheres containing a phase change material are dispersed. Preferred phase change materials include paraffinic hydrocarbons. The microspheres may be microencapsulated. A preferred cured foam substrate is a skived polyurethane or polyether foam of from 20 to 1000 mils in thickness, preferably 20 to 200 mils in thickness, having up to 6 ounces per square yard or more of encapsulated phase change material embedded in a polymer binder. One method of applying the binder with dispersed encapsulated phase change materials is by applying a binder/microsphere dispersion to the upper surface of a previously cured foam sheet with, then drawing a vacuum from the underside of the cured foam sheet to permeate from 20% to 100% of the cured foam sheet with the binder/microsphere dispersion. The resulting product is then cured. An alternative method of applying the binder with embedded encapsulated phase change materials using knife over roll technique to an exposed surface of the skived foam is disclosed in which the most preferred viscosity of the uncured polymer binder is from 7,000 to 9,000 centipoise.
Abstract:
A composition for saturation of preformed, previously cured foam substrates having an at least partially open cell configuration, includes a polymer binder in which microspheres containing a phase change material are dispersed. Preferred phase change materials include paraffinic hydrocarbons. The microspheres may be microencapsulated. A preferred cured foam substrate is a skived polyurethane or polyether foam of from 20 to 1000 mils in thickness, preferably 20 to 200 mils in thickness, having up to 6 ounces per square yard or more of encapsulated phase change material embedded in a polymer binder. One method of applying the binder with dispersed encapsulated phase change materials is by applying a binder/microsphere dispersion to the upper surface of a previously cured foam sheet with, then drawing a vacuum from the underside of the cured foam sheet to permeate from 20% to 100% of the cured foam sheet with the binder/microsphere dispersion. The resulting product is then cured. An alternative method of applying the binder with embedded encapsulated phase change materials using knife over roll technique to an exposed surface of the skived foam is disclosed in which the most preferred viscosity of the uncured polymer binder is from 7,000 to 9,000 centipoise.
Abstract:
In accordance with one aspect a temperature regulating article comprises a substrate and a polymeric phase change material bound to the substrate, wherein the polymeric phase change material is characterized by including a precisely branched polymer with substantially equally spaced repeating sidechains. In other embodiments the polymeric phase change material includes between 20 and 200 branches per 1000 carbon units, has a latent heat of at least 5 Joules per gram, and a transition temperature between 0° C. and 40° C.