Abstract:
Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof are described. In one embodiment, a multi-component fiber includes a fiber body formed from a set of elongated members, and at least one of the set of elongated members includes a temperature regulating material having a latent heat of at least 40 J/g. The temperature regulating material provides thermal regulation based on at least one of absorption and release of the latent heat at the transition temperature. The multi-component fiber can be formed via a melt spinning process or a solution spinning process and can be used or incorporated in various products where a thermal regulating property is desired. For example, the multi-component fiber can be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.
Abstract:
A composition comprising a functional polymeric phase change material, the functional polymeric phase change material carrying at least one reactive function, wherein the reactive function is capable of forming at least a first covalent bond. In certain embodiments, the reactive function is capable of forming at least a first covalent bond with a second material. In other embodiments, the functional polymeric phase change material comprises at least one crystallizable section and may also comprise a backbone chain and a plurality of side chains, wherein the plurality of side chains form the crystallizable section.
Abstract:
Fluoroplastics containing fluorocarbon resins and silicones are prepared by first mixing a fluorocarbon resin with a compatibilizer, then adding a curable organopolysiloxane with a radical initiator, and vulcanizing the organopolysiloxane in the mixture. The fluoroplastics can be processed by various techniques, such as extrusion, vacuum forming, injection molding, blow molding or compression molding, to fabricate plastic parts. The resulting fabricated parts can be re-processed (recycled) with little or no degradation of mechanical properties.
Abstract:
Cellulosic fibers having enhanced reversible thermal properties and applications of such cellulosic fibers are described. In one embodiment, a cellulosic fiber includes a fiber body including a cellulosic material and a set of microcapsules dispersed in the cellulosic material. The set of microcapsules contain a phase change material having a latent heat of at least 40 J/g and a transition temperature in the range of 0° C. to 100° C., and the phase change material provides thermal regulation based on at least one of absorption and release of the latent heat at the transition temperature. The cellulosic fiber can be formed via a solution spinning process, and can be used in various products where thermal regulating properties are desired.
Abstract:
Fluoroplastics containing fluorocarbon resins and silicones are prepared by first mixing a fluorocarbon resin with a compatibilizer, then adding a curable organopolysiloxane with a radical initiator, and vulcanizing the organopolysiloxane in the mixture. The fluoroplastics can be processed by various techniques, such as extrusion, vacuum forming, injection molding, blow molding or compression molding, to fabricate plastic parts. The resulting fabricated parts can be re-processed (recycled) with little or no degradation of mechanical properties.
Abstract:
A compostable multilayer film includes a core layer having a first surface and a second surface, a first blocking reducing layer covering the first surface of the core layer, and a second blocking reducing core layer comprises a lactic acid residue-containing polymer having a glass transition temperature (Tg) below 20.degree. C. The first and second blocking reducing layers comprise a semicrystalline aliphatic polyester. The hydrolyzable polymer and have a T.sub.g above about 50.degree. C. The multilayer structure can be used for preparing bags and wrappers.
Abstract:
An article comprises a substrate and a functional polymeric phase change material bound to the substrate. In some aspects the functional polymeric phase change material is chemically bound to the substrate and can be accomplished by at least one of covalent bonding or electrovalent bonding. The functional polymeric phase change material can comprise a reactive function selected from the group consisting of an acid anhydride group, an alkenyl group, an alkynyl group, an alkyl group, an aldehyde group, an amide group, an amino group and their salts, a N-substituted amino group, an aziridine, an aryl group, a carbonyl group, a carboxy group and their salts, an epoxy group, an ester group, an ether group, a glycidyl group, a halo group, a hydride group, a hydroxy group, an isocyanate group, a thiol group, a disulfide group, a silyl or silane group, an urea group, and an urethane group, and wherein the substrate comprises at least one of cellulose, wool, fur, leather, polyester and nylon. Methods of producing the articles are also disclosed.
Abstract:
In accordance with one aspect a temperature regulating article comprises a substrate and a polymeric phase change material bound to the substrate, wherein the polymeric phase change material is characterized by including a precisely branched polymer with substantially equally spaced repeating sidechains. In other embodiments the polymeric phase change material includes between 20 and 200 branches per 1000 carbon units, has a latent heat of at least 5 Joules per gram, and a transition temperature between 0° C. and 40° C.
Abstract:
A fabric, fiber or article comprising a plurality of fiber bodies, the plurality of fiber bodies including a first fiber material and a second fiber material, wherein the first fiber material comprises a cellulosic material and a phase change material dispersed in the cellulosic material, the phase change material forming a plurality of domains dispersed in the cellulosic material, the phase change material having a latent heat of at least 5 Joules per gram and a transition temperature in the range of 0° C. to 100° C., the phase change material providing thermal regulation based on at least one of absorption and release of the latent heat at the transition temperature. Wherein the second fiber material comprises a fire resistant material.
Abstract:
In accordance with one aspect, a thermally regulating construction material comprises a base material and a polymeric phase change material bound to the base material, wherein the base material provides reversible temperature regulation properties to the building construction material. In accordance with another aspect, an insulation material for use in building construction comprises a base material and a polymeric phase change material bound to the base material, wherein the base material provides reversible temperature regulation properties to the insulation material. The base material may be selected from the group consisting of foam insulation, loose fill insulation, and batted insulation.