Poultry vaccine for clostridium perfringens

    公开(公告)号:US11524061B2

    公开(公告)日:2022-12-13

    申请号:US17167893

    申请日:2021-02-04

    IPC分类号: A61K39/08 A61K39/00

    摘要: The present disclosure relates to nanoparticle compositions for use as vaccines against Clostridium perfringens in poultry which causes necrotic enteritis in poultry. Such compositions include one or more Clostridium perfringens extracellular proteins entrapped in a polyanhydride or chitosan nanoparticle. The one or more Clostridium perfringens extracellular proteins may include one or more Clostridium perfringens toxins, such as, for example, alpha toxin (CPA), beta toxin (CPB), epsilon toxin (ETX), iota toxin (ITX), perfringolysin O (PFO), enterotoxin (CPE), beta2 toxin (CPB2), or NetB toxin. In some aspects, the composition further includes a Salmonella enteritidis flagellar protein. The present invention also includes methods for the oral delivery of one or more Clostridium perfringens extracellular proteins to the mucosal membrane of the intestinal tract of a bird of the order Galliformes.

    Molecularly imprinted carbon
    6.
    发明授权

    公开(公告)号:US09610562B2

    公开(公告)日:2017-04-04

    申请号:US13582339

    申请日:2011-03-02

    摘要: Preparation of a molecularly imprinted carbon is described. The molecularly imprinted carbon has a surface that is imprinted on the molecular level for a specific template molecule of interest, making it highly selective for analytes corresponding to at least a portion of the template molecule. Devices including the molecularly imprinted carbon and their use in methods of detecting analytes are also described. As an example, dibutyl butylphosphonate (DBBP), a surrogate for chemical warfare agents, was used as a template molecule. Electrospun molecularly imprinted SU-8 and pyrolyzed polymer (PP) solid-phase microextraction (SPME) devices were prepared; their ability to preferentially extract DBBP from an aqueous matrix, with and without interferences present, was evaluated via comparison with non-imprinted SU-8 and PP SPME fibers. The electrospun devices demonstrated a higher selectivity for DBBP, as evidenced by their extraction time profiles. The MI-SPME fibers tested extracted at least 60% more DBBP than their non-imprinted counterparts.