Abstract:
A wearable instrument is provided that measures biological information over an extended period of time by enabling an electrode to be readily pressed to an axilla of an animal. The wearable instrument includes: electrodes to be placed under the left and right axillae of a dog to produce an electrocardiogram; pull-up straps to be placed in direct contact with the axilla to press the electrodes onto the axilla; and a cinch strap placed across the anterior chest of the dog to draw the left and right sections of the pull-up strap together.
Abstract:
The present invention provides a cell culture vessel or a sample cell for observation use that makes it possible to observe three-dimensionally-cultured cells from various angles. The cell culture vessel or the sample cell for observation use according to the present invention is characterized by being equipped with a culture gel in which a cell or cell tissue is embedded and a first vessel which encloses the culture gel, wherein a space in the first vessel is filled with the culture gel; and the first vessel has a light-permeable window made from a hydrogel.
Abstract:
An additive containing an ion as a luminescence center is added to alkali halide powder as a base material. Mechanical energy for applying an impact force, a shearing force, a shear stress, or a friction force is applied so as to grind or mix the alkali halide powder and the additive. The ion as the luminescence center is doped into the alkali halide as the base material so as to obtain alkali halide-based scintillator powder. With this process, the alkali halide-based scintillator powder can be manufactured at a room temperature in the atmospheric air without any complicated condition control or any process at a high temperature under high vacuum and a large-sized scintillator sheet can be produced.
Abstract:
Disclosed is a device and method allowing a trace amount of a target substance to be detected. A metallic nanoparticle assembly structure is formed of metallic nanoparticles assembled together and modified with a host molecule allowing the target substance to specifically adhere thereto. A metallic nanorod is modified with a host molecule allowing the target substance to specifically adhere thereto. The metallic nanorod is conjugated to the metallic nanoparticle assembly structure by the target substance. An extinction spectrum of localized surface plasmon resonance or a surface enhanced Raman scattering (SERS) spectrum induced in the metallic nanoparticle assembly structure and the metallic nanostructure is measured with a spectroscope. The target substance is detected based on that spectrum.
Abstract:
There is provided a method of well filling copper in a conductivity-rendered non-through hole having an aspect ratio (depth/hole diameter) of 5 or more on a substrate in a short period of time, and the method comprises using an acidic copper plating bath comprising a water-soluble copper salt, sulfuric acid, chlorine ion, a brightener and a copolymer of diallylamines and sulfur dioxide and filling copper in the non-through hole by periodic current reversal copper plating.
Abstract:
The present invention provides a structural material having enhanced ductility characteristics at high temperatures and enhanced strength characteristics. The present invention provides an Ni3(Si, Ti)-based intermetallic compound characterized by containing from 25 to 500 ppm by weight of B with respect to a weight of an intermetallic compound having a composition of 100% by atom in total consisting of Ni as a main component, from 7.5 to 12.5% by atom of Si, from 4.5 to 11.5% by atom of Ti and from 0.5 to 5.0% by atom of W.
Abstract:
A detection device detects an analyte that may be contained in a specimen. The detection device includes a plurality of gold nanoparticles, an optical trapping light source, an illumination light source, an objective lens, an image pick-up device, and a computation unit. The plurality of gold nanoparticles are each modified with a probe DNA allowing the analyte to specifically adhere thereto. The optical trapping light source emits polarized light for assembling the plurality of gold nanoparticles together. The objective lens focuses and introduces the polarized light into a liquid containing a specimen and the plurality of gold nanoparticles. The image pick-up device receives light from the liquid. The computation unit detects an analyte based on a signal received from the image pick-up device.
Abstract:
A Euglena carrying a foreign gene of interest in an expressible manner is provided.A Euglena carrying a drug resistance gene and a foreign gene of interest in an expressible manner.
Abstract:
The present invention provides a sensor including a detection unit having a detection electrode and a polymer layer that is disposed on the detection electrode and includes a mold having a three-dimensional structure complementary to a steric structure of a microorganism to be detected. The sensor detects the microorganism based on a state of capturing the microorganism in the mold. The polymer layer is formed by a manufacturing method including: a polymerization step of polymerizing a monomer in the presence of the microorganism to be detected, to form the polymer layer having captured the microorganism on the detection electrode; a destruction step of partially destroying the microorganism captured in the polymer layer; and a peroxidation step of peroxidizing the polymer layer to release the microorganism from the polymer layer.
Abstract:
A fatty tissue image display device includes a light source, an ultrasonic wave transmission/reception mechanism, an analysis unit which calculates a velocity change of ultrasonic waves after irradiation with a heating beam as compared to before irradiation with light, a display control unit which displays the distribution of the calculated velocity change of the ultrasonic waves, a designation unit which waits for the designation of a region of interest, a histogram calculation unit which, based on luminance information or color information within the designated region of interest, calculates the histograms of a fatty region showing a negative velocity change of the ultrasonic waves and a normal region showing a positive velocity change of the ultrasonic waves, and an index calculation unit which, from the calculated histograms of the fatty and normal regions, calculates a fatty change index that is an index of a proportion of fatty tissue.