Abstract:
Disclosed is a system for compressing short or ultra-short light pulses emitted by a light source. The compression system includes:—a first non-linear light pulse compression module including a multi-pass cell, the multi-pass cell including a first non-linear optical medium; and—a second non-linear light pulse compression module including a capillary filled with a gaseous second non-linear optical medium, and a compressor arranged at the output of the capillary, the first non-linear compression module and the second non-linear compression module being arranged in series on the path of a source light beam of source light pulses. Also disclosed is a light-pulses laser system and to a method for compressing short or ultra-short light pulses.
Abstract:
Disclosed is a system for generating a spatially localized, high-intensity laser beam, including: a laser source designed to generate a burst of N laser pulses with a duration of less than or equal to one picosecond, the N laser pulses having a first repetition frequency greater than or equal to 0.5 gigahertz; a resonant optical cavity designed to receive and store the burst of N laser pulses, the resonant optical cavity being designed to focus the burst of N laser pulses in an interaction region of the resonant optical cavity; and a servo control system designed to control the first repetition frequency relative to the roundtrip distance in the resonant optical cavity, such that the N pulses of the burst are superimposed temporally and spatially by constructive interferences in the interaction region so as to form one giant ultra-short and high-energy pulse.
Abstract:
Disclosed is a nonlinear optical system for generating or amplifying light pulses by N-wave mixing, including a nonlinear optical medium suitable for receiving at least one first light pulse and one second light pulse. The system includes a fast modulation device for modulating a time delay between the second light pulse and the first pulse light in the nonlinear optical medium, the time delay modulation device being placed upstream of the nonlinear optical medium, and the time delay modulation device being modulated at least between a first delay value and a second delay value, so as to modulate the generation or amplification of a light pulse by N-wave mixing of the at least one first light pulse et one second light pulse in the nonlinear optical medium.
Abstract:
A system and method for generating a burst of ultra-short, high-power laser pulses, the system includes elements for generating laser pulses having a repetition period τ1, amplification elements including an optical amplifier medium, a regenerative optical cavity, elements for injecting the laser pulses into the regenerative optical cavity, and elements for extracting the laser pulses from the regenerative optical cavity. The regenerative optical cavity has a total length such that the duration of a round trip of each pulse is between N−1 and N times the period τ1, wherein N is an integer higher than or equal to 2, the injection elements are adapted for trapping a burst of N laser pulses in the regenerative optical cavity, the extraction elements are suitable to extract the burst of N laser pulses from the regenerative optical cavity, and the optical amplifier medium is suitable for forming a burst of amplified laser pulses.
Abstract:
A system and method for generating a burst of ultra-short, high-power laser pulses, the system includes elements for generating laser pulses having a repetition period τ1, amplification elements including an optical amplifier medium, a regenerative optical cavity, elements for injecting the laser pulses into the regenerative optical cavity, and elements for extracting the laser pulses from the regenerative optical cavity. The regenerative optical cavity has a total length such that the duration of a round trip of each pulse is between N−1 and N times the period τ1, wherein N is an integer higher than or equal to 2, the injection elements are adapted for trapping a burst of N laser pulses in the regenerative optical cavity, the extraction elements are suitable to extract the burst of N laser pulses from the regenerative optical cavity, and the optical amplifier medium is suitable for forming a burst of amplified laser pulses.
Abstract:
Disclosed is a method for cutting dielectric or semiconducting material with a laser. The method includes the following steps: emission of a laser beam including at least one burst of N femtoseconds laser pulses; spatial separation of the laser beam into a first split beam having a first energy, and respectively, a second split beam having a second energy; spatial concentration of energy of the first split beam in a first zone of the material, respectively, of the second split beam in a second zone of the material, the first zone and the second zone being separate and staggered by a distance dx; and adjustment of the distance between the first zone and the second zone in such a way as to initiate a straight micro-fracture oriented between the first zone and the second zone.
Abstract:
Disclosed is a laser system including a source, for generating a source signal, and an optical amplifier system. The laser system includes a pulse selection or variation device configured to select or vary the source signal so as to form a main signal composed of one or more light pulses. The main signal is temporally variable in terms of rhythm and/or amplitude. The laser system is configured to inject the main signal and a secondary signal into the optical amplifier system. The secondary signal is varied on the basis of the temporal variation in terms of rhythm and/or amplitude of the main signal so as to stabilize the power stored in the optical amplifier system in a time-dependent manner, and the laser system is configured to spatially separate the amplified main signal from the amplified secondary signal.
Abstract:
Disclosed is a UV-visible laser system having ultrashort pulses with high power and/or high energy. The laser system includes at least one non-linear optical crystal (1) adapted for receiving two distinct ultrashort laser pulses (31, 32) in the visible or infrared domain emitted respectively by two distinct laser pulse sources (11, 12) and a temporal synchronization unit (41, 42) adapted so that the two ultrashort laser pulses (31, 32) are superimposed in time and space in the non-linear optical crystal (1) with any phase shift, and generate, by sum frequency, an ultrashort laser pulse (131) having an optical frequency equal to the sum of the respective optical frequencies of the two distinct laser pulses (31, 32).
Abstract:
Disclosed is a UV-visible laser system having ultrashort pulses with high power and/or high energy. The laser system includes at least one non-linear optical crystal (1) adapted for receiving two distinct ultrashort laser pulses (31, 32) in the visible or infrared domain emitted respectively by two distinct laser pulse sources (11, 12) and a temporal synchronisation unit (41, 42) adapted so that the two ultrashort laser pulses (31, 32) are superimposed in time and space in the non-linear optical crystal (1) with any phase shift, and generate, by sum frequency, an ultrashort laser pulse (131) having an optical frequency equal to the sum of the respective optical frequencies of the two distinct laser pulses (31, 32).
Abstract:
Disclosed is a system and a method for generating high-power laser pulses with very high repetition rate. The laser system includes an oscillator capable of generating a source laser beam including a series of sources pulses with femtosecond or picosecond duration at a first repetition frequency no lower than 800 megahertz and an optical amplifier system suitable for receiving and amplifying the series of source pulses at a second repetition frequency that is equal to or a multiple of the first repetition frequency, the multiple being a non-negative integer greater than or equal to two, so as to generate a series of laser pulses with very high repetition frequency.