摘要:
The invention concerns a measuring system for optical monitoring of coating processes in a vacuum chamber, in which the light source is arranged inside the vacuum chamber between the substrate carrier and a shutter is arranged beneath the substrate carrier and the light-receiving unit is arranged outside the vacuum chamber in the optical path of the light source. The substrate carrier is designed to accept at least one substrate, and it can move across the coasting source in the vacuum chamber, preferably revolving about an axis, whereby the substrate or substrates cross(es) the optical path between the light source and the light-receiving unit for transmission measurement, and the shutter shades a measurement area across the coating source.
摘要:
The invention relates to a process of providing a scratch-resistant coating for a lens made of an optical material comprising synthetics. In order for the synthetic material, for example a CR 39, to be protected against scratches, a very thin adhesion layer of SiO is applied first, and is subsequently provided with a thick SiO.sub.2 layer. Both layers are deposited in a vacuum chamber which comprises both a thermal vaporizer for vaporizing the coating materials and a plasma source for irradiating the substrate simultaneously with application of the vaporized coating material.
摘要:
The invention concerns a measuring system for optical monitoring of coating processes in a vacuum chamber, in which the light source is arranged inside the vacuum chamber between the substrate carrier and a shutter is arranged beneath the substrate carrier and the light-receiving unit is arranged outside the vacuum chamber in the optical path of the light source. The substrate carrier is designed to accept at least one substrate, and it can move across the coasting source in the vacuum chamber, preferably revolving about an axis, whereby the substrate or substrates cross(es) the optical path between the light source and the light-receiving unit for transmission measurement, and the shutter shades a measurement area across the coating source.
摘要:
The invention concerns an optical monitoring system for the measurement of layer thicknesses of thin coatings applied in a vacuum, particularly on moving substrates, during the coating process, in which the light intensity of the light of a light source injected into a reference light guide and released by a first piezoelectric or electrostrictive or magnetostrictive light chopper is registered by a light detector unit in a reference phase, the light of the light source in a measuring phase is injected into a first measuring light guide and the light released by a second piezoelectric or electrostrictive or magnetostrictive light chopper is directed to the substrate, and the light intensity of the light reflected or transmitted from the substrate is registered by the light detector unit through a second measuring light guide, and a remaining light intensity is registered by the light detector unit in at least one dark phase, wherein the reference phase, the measuring phase, and the dark phase are shifted in time by the light chopper and are digitally adjusted depending on the position of the substrate.
摘要:
A photometer in which a measuring phase, a reference phase and a dark phase are produced by means of a chopper. These phases are staggered in time, so that a single detector can be provided for all phases. In the photometer the object to be measured is situated between two light conductors, the one light conductor leading to the detector and the other light conductor leading to the chopper input. The chopper output is carried by an additional light conductor to the detector.
摘要:
The invention concerns an optical monitoring system for the measurement of layer thicknesses of thin coatings applied in a vacuum, particularly on moving substrates, during the coating process, in which the light intensity of the light of a light source injected into a reference light guide and released by a first piezoelectric or electrostrictive or magnetostrictive light chopper is registered by a light detector unit in a reference phase, the light of the light source in a measuring phase is injected into a first measuring light guide and the light released by a second piezoelectric or electrostrictive or magnetostrictive light chopper is directed to the substrate, and the light intensity of the light reflected or transmitted from the substrate is registered by the light detector unit through a second measuring light guide, and a remaining light intensity is registered by the light detector unit in at least one dark phase, wherein the reference phase, the measuring phase, and the dark phase are shifted in time by the light chopper and are digitally adjusted depending on the position of the substrate.
摘要:
Process for continuous determination of the optical layer thickness of coatings, which are applied on both sides of the spherical surfaces of concave convex lenses having different spherical radii R1 and R2. In this process a ray of light is beamed eccentrically during the coating process at each concave convex lens, and the reflection or transmission at the convex spherical surface and at the concave spherical surface is continuously measured with photodiodes, and the respective optical layer thickness is determined from the functional relationship between the reflection or the transmission and the optical layer thickness.
摘要:
A vacuum chamber contains a crucible (4) and an electron beam source (5) for evaporating material in the crucible. A substrate holder (6) holds substrates (7) above the crucible (4) with a process space therebetween. A magnetron cathode (11, 12) is located in each of two compartments (9, 10) located on either side of the process space. An aperture (21, 22) connects each compartment to the process space; each cathode (11, 12) carries a target (13, 14) facing away from the respective aperture (21, 22). The cathodes are connected to a medium frequency RF power supply (16), and process gas is supplied to the compartments by lines (17, 18).
摘要:
An arrangement for measuring and controlling the thickness of optically transparent coatings during their build-up on substrates in vacuum coating installations. The measurement is carried out by determining at least one reference value and at least one measured value for the transmission or reflection value of the coated object by using a measuring light beam, a monochromator, a photo-receiver, an amplifier and an analyzing circuit.