Abstract:
A method for controlling a brake system including receiving a braking signal for setting a braking action by the brake system, ascertaining a minimum rate of pressure increase in the brake system in order to effect the braking action within a predefined response time, and setting a pumping capacity of a pump of the brake system so that the pressure in the brake system increases in accordance with the minimum rate.
Abstract:
A method for controlling a brake system including receiving a braking signal for setting a braking action by the brake system, ascertaining a minimum rate of pressure increase in the brake system in order to effect the braking action within a predefined response time, and setting a pumping capacity of a pump of the brake system so that the pressure in the brake system increases in accordance with the minimum rate.
Abstract:
A device and method for determining a temperature variable, in particular a temperature variable that characterizes the condition of an exhaust-gas treatment system of a combustion engine, are described. The temperature is specified on the basis of variables that characterize the mass flow in the exhaust-gas treatment system, and/or of a second temperature variable that characterizes the temperature upstream from the exhaust-gas treatment system.
Abstract:
A method and a device for controlling an internal combustion engine, in which a first quantity characterizing the flow resistance of a first component of the exhaust-gas treatment system is determined based on a first measured quantity and a volumetric-flow quantity, and the volumetric-flow quantity is determined based on a second quantity which characterizes the flow resistance of a second component of the exhaust system.
Abstract:
A device and method for determining a temperature variable, in particular a temperature variable that characterizes the condition of an exhaust-gas treatment system of a combustion engine, are described. The temperature is specified on the basis of variables that characterize the mass flow in the exhaust-gas treatment system, and/or of a second temperature variable that characterizes the temperature upstream from the exhaust-gas treatment system.
Abstract:
A device and a method for monitoring a sensor for an exhaust-gas after-treatment system, in particular a temperature sensor. In specified operating states, a first signal from the first sensor to be monitored may be compared to a second signal from a second sensor. Errors may be detected when at least the two signals differ from one another by more than a value.
Abstract:
A method and a device for monitoring a signal, in particular a pressure signal that characterizes the pressure differential at the input and output of an exhaust after-treatment system, are described. Errors are recognized on the basis of the occurrence of oscillations in the sensor signal.
Abstract:
A method and a device for monitoring an exhaust gas aftertreatment system, in particular an oxidation catalytic converter, are described. An error is recognized if an operating parameter does not change as expected, when a particular operating state is present.
Abstract:
A method and a device for controlling an internal combustion engine having an exhaust gas aftertreatment system are described. A quantity which characterizes the state of the exhaust gas aftertreatment system is determined based on at least one characteristic operating quantity of the internal combustion engine.
Abstract:
A method for determining the loading of a particle filter, in particular in a particle filter for filtering the exhaust gases of an internal combustion engine. A variable characterizing the flow resistance of the particle filter is determined on the basis of the temperature in the particle filter and the pressure in the particle filter, and a conclusion is drawn regarding the loading of the particle filter on the basis of the flow resistance.