摘要:
Methods of forming low resistivity tungsten films with good uniformity and good adhesion to the underlying layer are provided. The methods involve forming a tungsten nucleation layer using a pulsed nucleation layer process at low temperature and then treating the deposited nucleation layer prior to depositing the bulk tungsten fill. The treatment operation lowers resistivity of the deposited tungsten film. In certain embodiments, the depositing the nucleation layer involves a boron-based chemistry in the absence of hydrogen. Also in certain embodiments, the treatment operations involve exposing the nucleation layer to alternating cycles of a reducing agent and a tungsten-containing precursor. The methods are useful for depositing films in high aspect ratio and/or narrow features. The films exhibit low resistivity at narrow line widths and excellent step coverage.
摘要:
A system and method associated with a charge drain coating are disclosed. The charge drain coating may be applied to surfaces of an electron-optical device to drain electrons that come into contact with the charge drain coating so that the performance of the electron-optical device will not be hindered by electron charge build-up. The charge drain coating may include a doping material that coalesces into clusters that are embedded within a high dielectric insulating material. The charge drain coating may be deposited onto the inner surfaces of lenslets of the electron-optical device.
摘要:
Methods of forming low resistivity tungsten films with good uniformity and good adhesion to the underlying layer are provided. The methods involve forming a tungsten nucleation layer using a pulsed nucleation layer process at low temperature and then treating the deposited nucleation layer prior to depositing the bulk tungsten fill. The treatment operation lowers resistivity of the deposited tungsten film. In certain embodiments, the depositing the nucleation layer involves a boron-based chemistry in the absence of hydrogen. Also in certain embodiments, the treatment operations involve exposing the nucleation layer to alternating cycles of a reducing agent and a tungsten-containing precursor. The methods are useful for depositing films in high aspect ratio and/or narrow features. The films exhibit low resistivity at narrow line widths and excellent step coverage.
摘要:
A digital pattern generator has a MEMS substrate with a plurality of doping layers and a plurality of insulating layers between respective doping layers. A plurality of lenslets are formed as holes through the substrate. A charge drain coating is applied to the inner surfaces of the lenslets. The charge drain coating drains electrons that come into contact with the charge drain coating so that the performance of the digital pattern generator will not be hindered by electron charge build-up. The charge drain coating includes a doping material that coalesces into clusters that are embedded within a high dielectric insulating material.
摘要:
A system and method associated with a charge drain coating are disclosed. The charge drain coating may be applied to surfaces of an electron-optical device to drain electrons that come into contact with the charge drain coating so that the performance of the electron-optical device will not be hindered by electron charge build-up. The charge drain coating may include a doping material that coalesces into clusters that are embedded within a high dielectric insulating material. The charge drain coating may be deposited onto the inner surfaces of lenslets of the electron-optical device.
摘要:
Methods of forming low resistivity tungsten films with good uniformity and good adhesion to the underlying layer are provided. The methods involve forming a tungsten nucleation layer using a pulsed nucleation layer process at low temperature and then treating the deposited nucleation layer prior to depositing the bulk tungsten fill. The treatment operation lowers resistivity of the deposited tungsten film. In certain embodiments, the depositing the nucleation layer involves a boron-based chemistry in the absence of hydrogen. Also in certain embodiments, the treatment operations involve exposing the nucleation layer to alternating cycles of a reducing agent and a tungsten-containing precursor. The methods are useful for depositing films in high aspect ratio and/or narrow features. The films exhibit low resistivity at narrow line widths and excellent step coverage.
摘要:
Methods of forming low resistivity tungsten films with good uniformity and good adhesion to the underlying layer are provided. The methods involve forming a tungsten nucleation layer using a pulsed nucleation layer process at low temperature and then treating the deposited nucleation layer prior to depositing the bulk tungsten fill. The treatment operation lowers resistivity of the deposited tungsten film. In certain embodiments, the depositing the nucleation layer involves a boron-based chemistry in the absence of hydrogen. Also in certain embodiments, the treatment operations involve exposing the nucleation layer to alternating cycles of a reducing agent and a tungsten-containing precursor. The methods are useful for depositing films in high aspect ratio and/or narrow features. The films exhibit low resistivity at narrow line widths and excellent step coverage.