Abstract:
A spectrum sensing method includes (a) receiving an incident radiation simultaneously through a filter array composed of multiple bandpass filters, (b) digitizing spectral responses of the filter array, and (c) generating an estimate of spectral profile of the incident radiation based on digitized spectral responses of the filter array.
Abstract:
The present invention relates to a measurement method of dew-point in low temperature, and more specifically to a measurement method of accurately distinguishing dew-point and frost-point using a quartz crystal microbalance dew-point sensor in a low temperature of 0° C. or less. To this end, the present invention provides a measurement method of distinguishing dew and frost point using a quartz crystal microbalance dew-point sensor in low temperature, comprising the steps of: measuring a resonant frequency of a quartz crystal microbalance dew-point sensor while slowly dropping temperature; observing shock waves of the resonant frequency; and determining dew point or frost point through the observation of the resonant frequency and shock waves of the quartz crystal microbalance dew-point sensor.
Abstract:
A spectrum sensing method includes (a) receiving an incident radiation simultaneously through a filter array composed of multiple bandpass filters, (b) digitizing spectral responses of the filter array, and (c) generating an estimate of spectral profile of the incident radiation based on digitized spectral responses of the filter array.
Abstract:
A tunable plasmonic filter or an optical filtering method discloses plasmonic filter structure and a voltage or current source. An intensity or wavelength of light transmitted through the filter structure is modulated by the intensity of a voltage or current from the voltage or current source. The plasmonic filter structure is located between electrodes electrically connected to the voltage or current source. The plasmonic filter structure is configured such that the incident light is resonant with at least one plasmonic mode on the structure, and a predetermined wavelength will perturb the metallic plasmonic structure in surface plasmon on energy bands for the wavelength selective transmission of light.
Abstract:
A spectrum sensing method includes (a) receiving an incident radiation simultaneously through a filter array composed of multiple bandpass filters, (b) digitizing spectral responses of the filter array, and (c) generating an estimate of spectral profile of the incident radiation based on digitized spectral responses of the filter array.
Abstract:
A plasmonic Fabry-Perot filter includes a first partial mirror and a second partial mirror separated from the first partial mirror by a gap. At least one of the first partial mirror or the second partial mirror includes an integrated plasmonic optical filter array.
Abstract:
A device such as a filter or reflector includes a conductive layer including a periodic pattern of elements. The elements have shapes and sizes configured such that a transmittance or reflectance spectrum of the conductive layer has a drop at a long-wavelength end. The elements have a period configured such that the spectrum has a dip at a Plasmon mode resonant wavelength. The spectrum further includes a peal- between the dip and the drop.
Abstract:
Disclosed is an airtight container comprising: a container body having an opening portion and a flange formed along an outer circumference of the opening portion; and a lockable lid that is disposed to cover the opening portion of the container body and that has a locking wing at an edge, wherein the locking wing further comprises upper and lower supporting protrusions disposed on an inner surface of the locking wing at an interval that permits engagement of the flange between the upper and lower supporting protrusions.
Abstract:
In accordance with embodiments of the present invention, a nano structure optical wavelength filter is provided. A film made of a negative dielectric constant material such as a metal has embossing structures of subwavelength scale, located thereon in an array in a pattern. The array pattern and the structures are configured such that when light is incident on the array structures, at least one plasmon mode is resonant with the incident light to produce a transmission spectral window with desired spectral profile, bandwidth and beam shape.
Abstract:
A device such as a filter or reflector includes a conductive layer including a periodic pattern of elements. The elements have shapes and sizes configured such that a transmittance or reflectance spectrum of the conductive layer has a drop at a long-wavelength end. The elements have a period configured such that the spectrum has a dip at a Plasmon mode resonant wavelength. The spectrum further includes a peal—between the dip and the drop.