Abstract:
A device such as a filter or reflector includes a conductive layer including a periodic pattern of elements. The elements have shapes and sizes configured such that a transmittance or reflectance spectrum of the conductive layer has a drop at a long-wavelength end. The elements have a period configured such that the spectrum has a dip at a Plasmon mode resonant wavelength. The spectrum further includes a peal- between the dip and the drop.
Abstract:
In accordance with embodiments of the present invention, a nano structure optical wavelength filter is provided. A film made of a negative dielectric constant material such as a metal has embossing structures of subwavelength scale, located thereon in an array in a pattern. The array pattern and the structures are configured such that when light is incident on the array structures, at least one plasmon mode is resonant with the incident light to produce a transmission spectral window with desired spectral profile, bandwidth and beam shape.
Abstract:
A spectrum sensing method includes (a) receiving an incident radiation simultaneously through a filter array composed of multiple bandpass filters, (b) digitizing spectral responses of the filter array, and (c) generating an estimate of spectral profile of the incident radiation based on digitized spectral responses of the filter array.
Abstract:
A plasmonic Fabry-Perot filter includes a first partial mirror and a second partial mirror separated from the first partial mirror by a gap. At least one of the first partial mirror or the second partial mirror includes an integrated plasmonic optical filter array.
Abstract:
A spectrum sensing method includes (a) receiving an incident radiation simultaneously through a filter array composed of multiple bandpass filters, (b) digitizing spectral responses of the filter array, and (c) generating an estimate of spectral profile of the incident radiation based on digitized spectral responses of the filter array.
Abstract:
A visible wavelength range proximity sensor includes a visible light emitter with a peak wavelength in a visible wavelength range, and a plasmonic ambient light sensor, where a proximity sensing mode and an ambient light sensing mode are time multiplexed.
Abstract:
A device such as a filter or reflector includes a conductive layer including a periodic pattern of elements. The elements have shapes and sizes configured such that a transmittance or reflectance spectrum of the conductive layer has a drop at a long-wavelength end. The elements have a period configured such that the spectrum has a dip at a Plasmon mode resonant wavelength. The spectrum further includes a peal—between the dip and the drop.
Abstract:
A tunable plasmonic filter or an optical filtering method discloses plasmonic filter structure and a voltage or current source. An intensity or wavelength of light transmitted through the filter structure is modulated by the intensity of a voltage or current from the voltage or current source. The plasmonic filter structure is located between electrodes electrically connected to the voltage or current source. The plasmonic filter structure is configured such that the incident light is resonant with at least one plasmonic mode on the structure, and a predetermined wavelength will perturb the metallic plasmonic structure in surface plasmon on energy bands for the wavelength selective transmission of light.
Abstract:
A plasmonic Fabry-Perot filter includes a first partial mirror and a second partial mirror separated from the first partial mirror by a gap. At least one of the first partial mirror or the second partial mirror includes an integrated plasmonic optical filter array.
Abstract:
A visible wavelength range proximity sensor includes a visible light emitter with a peak wavelength in a visible wavelength range, and a plasmonic ambient light sensor, where a proximity sensing mode and an ambient light sensing mode are time multiplexed.