摘要:
A method and an apparatus for generating synthesis gas using hydrocarbons and water are described. In further embodiments of the method and the apparatus, synthesis gases having any desired CO/hydrogen ratio and/or synthetic functionalized and/or non-functionalized hydrocarbons are generated. With this method, a hydrocarbon containing fluid may be transformed into a synthesis gas having variable hydrogen content without generating significant amounts of CO2. Further, hydrogen and different forms of carbon may be obtained as by-products.
摘要:
An apparatus for producing synthesis gas at high capacity is described, wherein particularly fast conversion and operation for a long time without interruption is obtained. The apparatus comprises a reactor (1) having a reactor chamber (2) which comprises at least one first inlet (5) connected to a source of hydrocarbon fluid and at least one outlet (15); further a plasma burner (7) having a burner part (11) which is adapted to produce a plasma; and at least one second inlet (6) connected to a source of CO2 or H2O. The reactor chamber (2) defines a flow path from the first inlet (5) to the outlet (15), wherein the burner part is located, with respect to the flow path, between the first inlet (5) for hydrocarbon fluid and the second inlet (6) for CO2 or H2O; and wherein the second inlet (6) is located with respect to the flow path such that the second inlet (6) is at a location where between 90% and 95% of the hydrocarbon fluid is thermally decomposed. Further a method for operating an apparatus for producing synthesis gas is described.
摘要:
A method for producing ¾-rich synthesis gas comprises the following steps: decomposing a hydrocarbon-containing fluid into an H2/C-aerosol in a first hydrocarbon converter by supplying energy which is at least partly provided in the form of heat; introducing at least a first stream of the H2/C-aerosol into a first sub-process which comprises the following steps: directing at least a part of the H2/C-aerosol from the first hydrocarbon converter into a first C-converter; introducing CO2 into the first C-converter and mixing the CO2 with the H2/C-aerosol introduced into the first C-converter; converting the mixture of H2/C-aerosol and CO2 into a synthesis gas at a temperature of 800 to 1700° C.; mixing additional H2 with the synthesis gas for the production of H2-rich synthesis gas. In a second sub-process running in parallel with the first sub-process, hydrogen H2 and carbon dioxide CO2 are produced from a hydrocarbon-containing fluid, wherein at least a portion of the CO2 produced in the second sub-process is introduced into the first C-converter; and wherein at least a portion of the H2 produced in the second sub-process is mixed with the synthesis gas from the first C-converter. The CO2 which is needed for the conversion of C in the first C-converter can thereby be provided independently of an external source, and the entire operational sequence is easily controllable.
摘要:
The apparatus described herein comprises a first reaction chamber having an inlet for a hydrocarbon medium, particularly a gas having the composition CnHm, and an outlet. Means for decomposing the hydrocarbons into carbon particles and hydrogen by introducing heat are provided between the inlet and the outlet in the first reaction chamber. The apparatus also comprises a second reaction chamber having an elongated configuration and having a first inlet at one end and an outlet at the opposite end, wherein the first inlet of the second reaction chamber is connected with the outlet of the first reaction chamber, and wherein the second reaction chamber comprises a widening flow cross-section (measured perpendicular to the longitudinal dimension of the second reaction chamber) between the inlet and the outlet. In addition, at least one second inlet into the second reaction chamber is provided, wherein the second inlet can be connected to a source for CO2 and/or H2O. Preferably, the second inlet is connected with a source of CO2, and therefore CO2 is injected therewith during operation. A method for operating this apparatus is also described. The energy balance of a synthesis gas production can be improved with the apparatus and the method for operating compared with known methods.
摘要:
The present blast furnace and method for operating a blast furnace are able to reduce CO2 production and the amount of applied additives and heating material. The method for metal production of metal ores comprising the following steps: reducing a metal ore, particularly a metal oxide, and thereby producing furnace gas containing CO2 in a blast furnace shaft; discharging the furnace gas from the blast furnace shaft; directing at least a portion of the furnace gas into a CO2 converter and reducing the CO2 in the furnace gas into CO; directing at least a portion of the CO from the CO2 converter into the blast furnace shaft. The method produces CO as a gaseous reduction agent which may be easily introduced into the blast furnace shaft. Further, a blast furnace for metal production by reducing a metal ore designed for operating according to the method is described.
摘要:
A process for processing metal ore includes: reducing a metal ore, particularly a metallic oxide, in a blast furnace shaft; producing furnace gas containing CO2, in the blast furnace shaft; discharging the furnace gas from the blast furnace shaft; directing at least a portion of the furnace gas directly or indirectly into a CO2-converter; and converting the CO2 contained in the furnace gas into an aerosol consisting of a carrier gas and C-particles in the CO2-converter in the presence of a stoichiometric surplus of C; directing at least a first portion of the aerosol from the CO2-converter into the blast furnace shaft; and introducing H2O into the blast furnace shaft. By virtue of the reaction C+H2O→CO2+2H, nascent hydrogen is produced in the blast furnace which causes rapid reduction of the metal ore. The speed of reduction of the metal ore is thus increased, and it is possible to increase either the throughput capacity of the blast furnace or to reduce the size of the blast furnace. An aerosol in the form of a fluid is easily introducible into the blast furnace shaft.
摘要:
A method producing synthetic hydrocarbons includes producing synthesis gas. An initial step, carbon or a mixture of carbon and hydrogen is brought into contact with water at a temperature of 800-1700° C. The synthesis gas is converted into synthetic functionalised and/or non-functionalised hydrocarbons by means of a Fischer Tropsch process wherein it is brought into contact with a suitable catalyst, and wherein water in which a portion of the synthetic hydrocarbons is dissolved results as a by-product. At least a portion of the water that is produced as a by-product is supplied to the initial step. The hydrocarbons that are dissolved in the water decompose into particle-like carbon and hydrogen at the high temperature. The carbon is converted into CO in the presence of water and at a high temperature and forms a portion of the synthesis gas that is produced. In this way, a costly process for cleaning half of the water that is produced as a by-product is avoided.
摘要:
A method and an apparatus for generating synthesis gas using hydrocarbons and water are described. In further embodiments of the method and the apparatus, synthesis gases having any desired CO/hydrogen ratio and/or synthetic functionalised and/or non-functionalised hydrocarbons are generated. With this method, a hydrocarbon containing fluid may be transformed into a synthesis gas having variable hydrogen content without generating significant amounts of CO2. Further, hydrogen and different forms of carbon may be obtained as by-products.
摘要:
A method for producing ¾-rich synthesis gas comprises the following steps: decomposing a hydrocarbon-containing fluid into an H2/C-aerosol in a first hydrocarbon converter by supplying energy which is at least partly provided in the form of heat; introducing at least a first stream of the H2/C-aerosol into a first sub-process which comprises the following steps: directing at least a part of the H2/C-aerosol from the first hydrocarbon converter into a first C-converter; introducing CO2 into the first C-converter and mixing the CO2 with the H2/C-aerosol introduced into the first C-converter; converting the mixture of H2/C-aerosol and CO2 into a synthesis gas at a temperature of 800 to 1700° C.; mixing additional H2 with the synthesis gas for the production of H2-rich synthesis gas. In a second sub-process running in parallel with the first sub-process, hydrogen H2 and carbon dioxide CO2 are produced from a hydrocarbon-containing fluid, wherein at least a portion of the CO2 produced in the second sub-process is introduced into the first C-converter; and wherein at least a portion of the H2 produced in the second sub-process is mixed with the synthesis gas from the first C-converter. The CO2 which is needed for the conversion of C in the first C-converter can thereby be provided independently of an external source, and the entire operational sequence is easily controllable.
摘要:
A process for processing metal ore includes: reducing a metal ore, particularly a metallic oxide, in a blast furnace shaft; producing furnace gas containing CO2, in the blast furnace shaft; discharging the furnace gas from the blast furnace shaft; directing at least a portion of the furnace gas directly or indirectly into a CO2-converter; and converting the CO2 contained in the furnace gas into an aerosol consisting of a carrier gas and C-particles in the CO2-converter in the presence of a stoichiometric surplus of C; directing at least a first portion of the aerosol from the CO2-converter into the blast furnace shaft; and introducing H2O into the blast furnace shaft. By virtue of the reaction C+H2O→CO2+2H, nascent hydrogen is produced in the blast furnace which causes rapid reduction of the metal ore. The speed of reduction of the metal ore is thus increased, and it is possible to increase either the throughput capacity of the blast furnace or to reduce the size of the blast furnace. An aerosol in the form of a fluid is easily introducible into the blast furnace shaft.