摘要:
A method of manufacturing a semiconductor device having metal gate includes providing a substrate having at least a dummy gate, a sacrificial layer covering sidewalls of the dummy gate and a dielectric layer exposing a top of the dummy gate formed thereon, forming a sacrificial layer covering sidewalls of the dummy gate on the substrate, forming a dielectric layer exposing a top of the dummy gate on the substrate, performing a first etching process to remove a portion of the sacrificial layer surrounding the top of the dummy gate to form at least a first recess, and performing a second etching process to remove the dummy gate to form a second recess. The first recess and the second recess construct a T-shaped gate trench.
摘要:
A method of selectively removing a patterned hard mask is described. A substrate with a patterned target layer thereon is provided, wherein the patterned target layer includes a first target pattern and at least one second target pattern, and the patterned hard mask includes a first mask pattern on the first target pattern and a second mask pattern on the at least one second target pattern. A first photoresist layer is formed covering the first mask pattern. The sidewall of the at least one second target pattern is covered by a second photoresist layer. The second mask pattern is removed using the first photoresist layer and the second photoresist layer as a mask.
摘要:
A removing method of a hard mask includes the following steps. A substrate is provided. At least two MOSFETs are formed on the substrate. An isolating structure is formed in the substrate and located between the at least two MOSFETs. Each of the MOSEFTs includes a gate insulating layer, a gate, a spacer and a hard mask on the gate. A protecting structure is formed on the isolating structure and the hard mask is exposed from the protecting structure. The exposed hard mask is removed to expose the gate.
摘要:
A removing method of a hard mask includes the following steps. A substrate is provided. At least two MOSFETs are formed on the substrate. An isolating structure is formed in the substrate and located between the at least two MOSFETs. Each of the MOSEFTs includes a gate insulating layer, a gate, a spacer and a hard mask on the gate. A protecting structure is formed on the isolating structure and the hard mask is exposed from the protecting structure. The exposed hard mask is removed to expose the gate.
摘要:
A method of manufacturing a semiconductor device having metal gate includes providing a substrate having at least a dummy gate, a sacrificial layer covering sidewalls of the dummy gate and a dielectric layer exposing a top of the dummy gate formed thereon, forming a sacrificial layer covering sidewalls of the dummy gate on the substrate, forming a dielectric layer exposing a top of the dummy gate on the substrate, performing a first etching process to remove a portion of the sacrificial layer surrounding the top of the dummy gate to form at least a first recess, and performing a second etching process to remove the dummy gate to form a second recess. The first recess and the second recess construct a T-shaped gate trench.
摘要:
A method of manufacturing a metal gate is provided. The method includes providing a substrate. Then, a gate dielectric layer is formed on the substrate. A multi-layered stack structure having a work function metal layer is formed on the gate dielectric layer. An O2 ambience treatment is performed on at least one layer of the multi-layered stack structure. A conductive layer is formed on the multi-layered stack structure.
摘要:
The method of fabricating a semiconductor structure according to the present invention includes planarizing an inter-layer dielectric layer and further a hard mask to remove a portion of hard mask in a thickness direction. The remaining hard mask has a thickness less than the original thickness of the hard mask. The remaining hard mask and the dummy gate are removed to form a recess. After a gate material is filled into the recess, a gate with a relatively accurate height can be obtained.
摘要:
A method of fabricating an efuse structure, a resistor structure and a transistor structure. First, a work function metal layer, a polysilicon layer and a first hard mask layer are formed to cover a transistor region, a resistor region and an e-fuse region on a substrate. Then, the work function metal layer on the resistor region and the efuse region is removed by using a first photomask. Later, a gate, a resistor, an efuse are formed in the transistor region, the resistor region and the efuse region respectively. After that, a dielectric layer aligning with the top surface of the gate is formed. Later, the polysilicon layer in the gate is removed by taking a second hard mask as a mask to form a recess. Finally, a metal layer fills up the recess.
摘要:
A method of fabricating an efuse structure, a resistor structure and a transistor structure. First, a work function metal layer, a polysilicon layer and a first hard mask layer are formed to cover a transistor region, a resistor region and an e-fuse region on a substrate. Then, the work function metal layer on the resistor region and the efuse region is removed by using a first photomask. Later, a gate, a resistor, an efuse are formed in the transistor region, the resistor region and the efuse region respectively. After that, a dielectric layer aligning with the top surface of the gate is formed. Later, the polysilicon layer in the gate is removed by taking a second hard mask as a mask to form a recess. Finally, a metal layer fills up the recess.
摘要:
The present invention provides a method of manufacturing semiconductor device having metal gates. First, a substrate is provided. A first conductive type transistor having a first sacrifice gate and a second conductive type transistor having a second sacrifice gate are disposed on the substrate. The first sacrifice gate is removed to form a first trench. Then, a first metal layer is formed in the first trench. The second sacrifice gate is removed to form a second trench. Next, a second metal layer is formed in the first trench and the second trench. Lastly, a third metal layer is formed on the second metal layer wherein the third metal layer is filled into the first trench and the second trench.