Abstract:
A linear actuator includes a motor, a movable unit, and a stroke control unit. The motor includes a spindle. The movable unit includes a worm gear and a rotary shaft. The worm is provided with annular spiral or helix teeth. The stroke control unit includes at least one transmission member and at least one micro switch. The at least one transmission member is engaged with and driven by the spiral or the helix teeth of the movable unit for synchronical rotation to activating or deactivating the micro switch. In this way, the linear actuator is simplified in structure and reduced in volume.
Abstract:
A heat conducting structure, a heat sink with the heat conducting structure, and a manufacturing method of the heat conducting structure are disclosed. The manufacturing method includes the steps of providing a first mold (20) and a second mold (30) having different concave cambers (211, 211a, 221, 221a), using the first mold (20) to progressively compress the heat pipes (10) and form a camber (112) at an evaporating section (11), using the second mold (30) to compress the camber (112) to form a contact plane (112′) and an attaching plane (113′) perpendicular to each other, coating an adhesive (50) on the contact planes (112′), connecting the contact planes to make the attaching planes co-planar.
Abstract:
A cooling rack structure includes a cooling plate (1), a temperature conductor (2), a centrifugal fan (3), a cooling body (4) and a thermoelectric cooling component (5). A temperature-super-conducting component (13) is disposed on an inner surface (11) of the cooling plate (1). The temperature conductor (2) is arranged on the temperature-super-conducting component (13). In addition, a heat-exhausting hole (120) is arranged on an upper side of the cooling plate (1). The centrifugal fan (3) is disposed between the temperature conductor (2) and the heat-exhausting hole (120) while the cooling body (4) is disposed between the fan (3) and the heat-exhausting hole (120). A hot side face (501) of the thermoelectric cooling component (5) closely contacts the cooling body (4) while a cold side face (500) is arranged on the temperature-super-conducting component (13). By quickly conducting the low temperature generated from the thermoelectric cooling component (5) onto the cooling plate (1) through the temperature-super-conducting component (13), a low temperature surface can be uniformly provided to obtain a cooling effect.
Abstract:
A method for making heated plane of a cooler to obtain better flatness and roughness includes a grinder with a grinding plate and a fixture. Then, the cooler is arranged onto the fixture. Next, the abrasive is injected into the gap between the grinding plate and the heated plane, making the fixture press and clamp the cooler in a way, such that the heated plane of the cooler contacts the abrasive closely. Finally, the grinding plate is rotated to make at least one grinding process to the heated plane, making the heated plane obtain a surface with better roughness and flatness, further enhancing the contact tightness between the heated plane and a heating element, and therefore promoting the thermally conductive efficiency between the cooler and the heating element.
Abstract:
A method for making heated plane of a cooler to obtain better flatness and roughness includes a grinder with a grinding plate and a fixture. Then, the cooler is arranged onto the fixture. Next, the abrasive is injected into the gap between the grinding plate and the heated plane, making the fixture press and clamp the cooler in a way, such that the heated plane of the cooler contacts the abrasive closely. Finally, the grinding plate is rotated to make at least one grinding process to the heated plane, making the heated plane obtain a surface with better roughness and flatness, further enhancing the contact tightness between the heated plane and a heating element, and therefore promoting the thermally conductive efficiency between the cooler and the heating element.
Abstract:
A method for assembling a fins-type heat sink includes providing a heat sink, a presser and a plurality of caps, the heat sink having a heat pipe and a plurality of fins disposed on the heat pipe, the presser being provided with through-holes allowing the distal ends of the heat pipe to be inserted therein, a periphery of each through-hole being provided with an annular neck, the presser being provided with notches that are arranged circumferentially outside the annular neck; (b) covering the caps on the annular necks of the presser respectively, each caps extending downwards to form protruding flaps penetrating the notches; (c) disposing a plate-like die on the topmost fin of the heat sink; (d) inserting a distal end of the heat pipe through the through-hole of the presser to abut inside the cap, while folding the flaps outwards via the plate-like die.
Abstract:
A heat sink having auto switching function, a heat sink system and a heat sinking method are disclosed. The heat sink receives a control command sent by an external device. An internal heat sink device is controlled according to content of the control command to control power ON or power OFF of a thermoelectric cooler of the heat sink device or to control power ON, power OFF, or change rotation speed setting of a heat sink fan in the heat sink device. Thus, the heat sink auto switches operations of the heat sink device correspondingly according to temperature changes of the external device.
Abstract:
A method for making heated plane of a cooler obtain better flatness and roughness includes a grinder with a grinding plate and a fixture. Then, the cooler is arranged onto the fixture. Next, the abrasive is injected into the gap between the grinding plate and the heated plane, making the fixture press and clamp the cooler in a way, such that the heated plane of the cooler contacts the abrasive closely. Finally, the grinding plate is rotated to make at least one grinding process to the heated plane, making the heated plane obtain a surface with better roughness and flatness, further enhancing the contact tightness between the heated plane and a heating element, and therefore promoting the thermally conductive efficiency between the cooler and the heating element.
Abstract:
A manufacturing method for a semiconductor structure, and a pixel structure and a manufacturing method for the same are provided. The manufacturing method for the semiconductor structure includes following steps. A substrate is provided. A first conductive layer is formed and patterned by using a first mask patterned. A first material film, including a first semiconductor layer, is formed and patterned by using a second mask. A second conductive layer is formed and patterned by using a third mask. A second material film, including a first dielectric layer, a second semiconductor layer and a second dielectric layer, is formed and patterned with using a fourth mask. The second dielectric layer is pattern by using a fifth mask. A third material film, including a third conductive layer, is formed and patterned by using a sixth mask.
Abstract:
The present invention relates to a LED lamp and a heat sink thereof having a wound heat pipe. The LED lamp includes the heat sink, a LED module and a lamp base electrically connected to the LED module. The heat sink includes a heat-conducting base, a heat-dissipating fin set and a wound heat pipe. The heat-dissipating fin set includes a plurality of heat-dissipating fins arranged at the outer periphery of the heat-conducting base. The heat-dissipating fins form an accommodating space. The wound heat pipe includes an evaporating section brought into thermal contact with the heat-conducting base and a condensing section brought into thermal contact with the heat-dissipating fins. The LED module abuts against the heat-conducting base and the evaporating section. By this structure, the heat-conducting path is shortened, the heat-conducting speed is accelerated, and the heat is rapidly and uniformly distributed to the heat-dissipating fins to improve the heat-dissipating efficiency.