Abstract:
An LED lamp structure includes a heat sink and a base. The heat sink includes a first receiving cavity, a second receiving cavity opposite to the first receiving cavity and a partition. A light board having LED modules is mounted on the partition. The partition defines two first threaded through holes therein. The base has two positioning protrusions engaging in two positioning grooves of the heat sink. Thus, second screw holes of two screw pillars of the base are aligned at the first screw holes of the partition of the heat sink. Screws are used to threadedly engage in the first screw holes, the second screw holes and third screw holes in the light board to thereby assemble the heat sink, the base and the light board together.
Abstract:
An LED package structure includes a substrate with a concave groove therein, an LED die received in the concave groove, a heat conductive pillar, two electrically conductive pillars, a heat conductive plate, and two contact pads. The heat conductive pillar extends through the substrate and thermally connects with the LED die and the heat conductive plate. The electrically conductive pillars extend through substrate and electrically connect with the LED die, respectively. The electrically conductive pillars and the heat conductive pillar are spaced from each other. The contact pads respectively and electrically connect with the electrically conductive pillars. The contact pads are spaced from each other.
Abstract:
A surface-mount device (SMD) light emitting diode (LED) module includes a leadframe, an LED chip, a waterproof protective film and a sealing material. The leadframe includes a plurality of leads and the LED chip is fixed on one of the leads. The waterproof protective film covers the LED chip and a portion of the leadframe, and exposes a portion of the leadframe for connecting to a circuit board. The sealing material is also formed on the leadframe to cover the LED chip. In addition, a method of manufacturing the SMD LED module is provided.
Abstract:
A light-emitting element package includes a package member for encapsulating a light-emitting element. A plurality of photonic crystal patterns is formed on the package member. A distribution density of the photonic crystal patterns corresponds to light distribution of the light-emitting element. Each photonic crystal pattern consists of a plurality of photonic crystals.
Abstract:
A traffic light assembly includes at least one light module, at least one lens located in front of the at least one light module, a transparent housing located in front of the at least one lens, and a cleaning device. The cleaning device includes a wiper located on an outer surface of the transparent housing, and a driver which drives the wiper to brush the transparent housing.
Abstract:
An LED lamp structure includes a heat sink and a base. The heat sink includes a first receiving cavity, a second receiving cavity opposite to the first receiving cavity and a partition. A light board having LED modules is mounted on the partition. The partition defines two first threaded through holes therein. The base has two positioning protrusions engaging in two positioning grooves of the heat sink. Thus, second screw holes of two screw pillars of the base are aligned at the first screw holes of the partition of the heat sink. Screws are used to threadedly engage in the first screw holes, the second screw holes and third screw holes in the light board to thereby assemble the heat sink, the base and the light board together.
Abstract:
An LED package includes a substrate, an LED die, and an encapsulating layer. The LED die is arranged on the substrate. The encapsulating layer covers the LED die and at least a part of the substrate. The encapsulating layer includes a light dispersing element. A light scattering intensity of the light dispersing element is proportional to the light intensity of light generated by the LED die and illuminated at the encapsulating layer. A luminance at a center of the LED package is substantially identical to that at a circumference of the LED package.
Abstract:
An LED light bar includes an elongated circuit board, a first lighting module formed in the middle of the circuit board and two second light modules formed at two opposite ends of the circuit board. Each of first lighting module and the two second lighting module includes a plurality of LEDs arranged linearly on a surface of the circuit board. A density of the LEDs in the first lighting module is smaller than that in the second lighting modules.
Abstract:
A light-emitting element package includes a package member for encapsulating a light-emitting element. A plurality of photonic crystal patterns is formed on the package member. A distribution density of the photonic crystal patterns corresponds to light distribution of the light-emitting element. Each photonic crystal pattern consists of a plurality of photonic crystals.