摘要:
Laser-based material processing systems and methods for using such systems are disclosed herein. In one embodiment, for example, a laser-based material processing system includes a workpiece support, a positioning assembly over at least a portion of the workpiece support, and a laser. The system includes a laser beam director carried by the positioning assembly to direct a beam generated by the laser toward the workpiece support. The system also includes a dispensing unit carried by the positioning assembly to discharge a material toward the workpiece support. The system further includes a controller operably coupled to the positioning assembly, the laser beam director, and the dispensing unit. The controller can be configured to move the laser beam director and the dispensing unit relative to the workpiece support such that (a) the beam is directed toward a first portion of the workpiece support, and (b) the dispensing unit discharges material toward the first portion of the workpiece support.
摘要:
The beam path [80] of a laser source [10] is first pre-aligned to a predetermined reference, and then the optical axis [90] of the beam delivery system [40, 50] of a laser material processing platform [20] is pre-aligned to the pre-aligned beam path of the laser source such that the two coincide. If the laser beam [80] is invisible, a laser simulator [72] having a visible pre-aligned beam may be used instead. When every laser source and every laser material processing platform [20] in a predetermined population thereof are pre-aligned in this manner, then any one of the laser sources and any one of the laser material processing platforms in the population may be interchanged for any one of its kind in the population and interfaced with any one of the other kind in the population to form a laser material processing system without any additional alignment requirement during or after the interfacing operation and the laser beam paths [80] and beam delivery system optical axes [90] will be automatically aligned with each other after any laser source in the line is combined with any laser material processing platform in the line.
摘要:
Embodiments of methods and systems for distributing laser energy are disclosed herein. A method configured in accordance with one embodiment includes establishing communication with a laser energy source configured to dispense laser energy, and enabling the laser energy source to dispense laser energy by transferring laser energy credits to the laser energy source. The transferred laser energy credits correspond to an amount of enabled laser energy.
摘要:
Slab lasers and method for producing high power coherent laser radiation of good quality. In one embodiment, a slab laser comprises a slab laser medium, an energy source configured to deliver energy to the laser medium, and first and second optical elements. The first optical element has a first reflective surface at a first boundary of the laser medium, and the second optical element has a second reflective surface at a second boundary of the laser medium. The first and second reflective surfaces face each other across the length of the laser medium, and at least one of the first and second optical elements includes a plurality of reflective regions configured to modify the phase distribution of the incident laser radiation propagating from the reflective regions. The first and second reflective surfaces are also positioned at an angle relative to each other to form a laser resonator.
摘要:
A computer controlled laser material processing system has a plurality of laser sources the beams of which are selectively operable between two modes. In a first raster engraving mode the beams are separated and independently controllable in synchronism with the motions of a beam delivery system to form plural, parallel, spaced apart scan lines on the surface of the workpiece for affecting the surface at high speed. In a second vector cutting mode the beams are combined such that they are collinear and have a power approximately equal to the sum of the powers of each individual laser source for cutting the surface at high power. The system may be switched by moving an optical element which, in the vector mode position, combines the beams and, in the raster mode position, separates the beams by either incrementally adjustably controlling the beams to provide a predetermined pitch between the scanned lines or by fixedly establishing a predetermined angle between the beams coupled with scanning in a variable interleaved pattern to achieve the desired pitch and image quality. Alternatively, an optical element may be inserted in the path of the collinear beams to separate them into parallel or angled beams for use in multi line scanning in the raster mode. The reverse sequence is followed to switch from raster to vector mode.
摘要:
Embodiments of flexible laser manufacturing systems are disclosed herein. A flexible laser manufacturing system configured in accordance with one embodiment includes a plurality of laser processing stations. Each laser processing station can include a laser source configured to generate a laser beam for processing target material, and a first controller coupled to the laser source. The flexible laser manufacturing system also includes a second controller coupled to the first controller of the individual laser processing stations. The second controller is configured to monitor and instruct each of the first controllers for processing target material of each of the corresponding laser processing stations.
摘要:
Embodiments of flexible laser manufacturing systems are disclosed herein. A flexible laser manufacturing system configured in accordance with one embodiment includes a plurality of laser processing stations. Each laser processing station can include a laser source configured to generate a laser beam for processing target material, and a first controller coupled to the laser source. The flexible laser manufacturing system also includes a second controller coupled to the first controller of the individual laser processing stations. The second controller is configured to monitor and instruct each of the first controllers for processing target material of each of the corresponding laser processing stations.
摘要:
Laser-based material processing systems, exhaust systems, and methods for using such systems are disclosed herein. One embodiment of a laser-based material processing system can include an exhaust assembly configured to remove contaminants from a material processing area. The exhaust assembly can include a vacuum source and an exhaust plenum carried by a moveable arm of a gantry-style laser beam positioning assembly. The moveable arm can extend along a first axis and can be moveable along a second axis generally normal to the first axis. The exhaust plenum can extend lengthwise in a direction generally parallel with the first axis. The exhaust assembly can also include an intake slot extending lengthwise along the exhaust plenum across at least a portion of the material processing area. The exhaust assembly can further include one or more flexible exhaust ducts in fluid communication with the vacuum source and the exhaust plenum.
摘要:
A laser includes a deformable tube holding an electrode assembly that includes conformable spacers. The spacers are deformed by compression of the tube into good surface contact with the electrodes and the tube walls, thereby providing the necessary path for heat removal from the plasma in order to maintain the required operating temperature for adequate performance of the laser.
摘要:
A portable laser processing module is adapted to be quickly and easily independently interfaced between a stationary exhaust docking station for fume extraction during in-office use and a portable air processing module for fume extraction during field use. A passageway in the housing connects the work area to an exhaust port which communicates with an inlet port in the docking station or the portable air processing module and ultimately to a blower unit in a facility or in an internal compartment in the portable air processing module which maintains a negative pressure in the work area for removal of fumes, debris, particulates, and contaminants therefrom. Guides are receivable in recesses between the laser processing module and the docking station or portable air processing module for guiding the module thereon, and a gasket seals the exhaust port and inlet port when the module is supported on the docking station or the portable air processing unit. A filtration unit including a filter set may be housed internally of the portable air processing unit.