摘要:
Sequential processes are conducted in a batch reaction chamber to form ultra high quality silicon-containing compound layers, e.g., silicon nitride layers, at low temperatures. Under reaction rate limited conditions, a silicon layer is deposited on a substrate using trisilane as the silicon precursor. Trisilane flow is interrupted. A silicon nitride layer is then formed by nitriding the silicon layer with nitrogen radicals, such as by pulsing the plasma power (remote or in situ) on after a trisilane step. The nitrogen radical supply is stopped. Optionally non-activated ammonia is also supplied, continuously or intermittently. If desired, the process is repeated for greater thickness, purging the reactor after each trisilane and silicon compounding step to avoid gas phase reactions, with each cycle producing about 5-7 angstroms of silicon nitride.
摘要:
A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer. Short purge channels may be provided to deliver some of the sweep gas to regions surrounding the spacers to cause a continuous flow of protective purge gas around the spacers. A common bottom section may cooperate with a plurality of different top sections to form segmented susceptors suitable for supporting various sized wafers.
摘要:
An improved chemical vapor deposition reaction chamber having an internal support plate to enable reduced pressure processing. The chamber has a vertical-lateral lenticular cross-section with a wide horizontal dimension and a shorter vertical dimension between bi-convex upper and lower walls. A central horizontal support plate is provided between two lateral side rails of the chamber. A large rounded rectangular aperture is formed in the support plate for positioning a rotatable susceptor on which a wafer is placed. The shaft of the susceptor extends downward through the aperture and through a lower tube depending from the chamber. The support plate segregates the reaction chamber into an upper region and a lower region, with purge gas being introduced through the lower tube into the lower region to prevent unwanted deposition therein. A temperature compensation ring is provided surrounding the susceptor and supported by fingers connected to the support plate. The temperature compensation ring may be circular or may be built out to conform to the rounded rectangular shape of the support plate aperture. The ring may extend farther downstream from the susceptor than upstream. A separate sacrificial quartz plate may be provided between the circular temperature compensation ring and the rounded rectangular aperture. The quartz plate may have a horizontal portion and a vertical lip in close abutment with the aperture to prevent devitrification of the support plate. A gas injector abuts an inlet flange of the chamber and injects process gas into the upper region and purge gas into the lower region. The gas injector includes a plurality of independently controlled channels disposed laterally across the chamber, the channels merging at an outlet of the injector to allow mixing of the adjacent longitudinal edges of the separate flows well before reaching the wafer.
摘要:
A wafer susceptor for semiconductor processing devices, having a thermal mass which is close to that of the wafer. The similarity between the thermal masses of the susceptor and wafer enables a higher throughput and reduces temperature uniformities across the wafer. The low-mass susceptor may be made of a solid, thin disk with or without a central wafer support recess. A wafer temperature sensing aperture may be provided in the center of the susceptor. Alternatively, a low-mass susceptor is formed with an open-celled silicon carbide foam, with or without a thin skin of solid silicon carbide on the top forming a wafer support surface, or completely encapsulating the open-celled foam. The wafer is preferably supported on a plurality of pins extending upward from the susceptor. In a third embodiment, an ultra low-mass susceptor is formed as a ring with a central throughbore and a surrounding wafer support shelf below an outer ledge.
摘要:
A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer. Short purge channels may be provided to deliver some of the sweep gas to regions surrounding the spacers to cause a continuous flow of protective purge gas around the spacers. A common bottom section may cooperate with a plurality of different top sections to form segmented susceptors suitable for supporting various sized wafers.
摘要:
A method of self-aligned silicidation involves interruption of the silicidation process prior to complete reaction of the blanket material (e.g., metal) in regions directly overlying patterned and exposed other material (e.g., silicon). Diffusion of excess blanket material from over other regions (e.g., overlying insulators) is thus prevented. Control and uniformity are insured by use of conductive rapid thermal annealing in hot wall reactors, with massive heated plates closely spaced from the substrate surfaces. Interruption is particularly facilitated by forced cooling, preferably also by conductive thermal exchange with closely spaced, massive plates.
摘要:
A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer. Short purge channels may be provided to deliver some of the sweep gas to regions surrounding the spacers to cause a continuous flow of protective purge gas around the spacers. A common bottom section may cooperate with a plurality of different top sections to form segmented susceptors suitable for supporting various sized wafers.
摘要:
A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer. Short purge channels may be provided to deliver some of the sweep gas to regions surrounding the spacers to cause a continuous flow of protective purge gas around the spacers. A common bottom section may cooperate with a plurality of different top sections to form segmented susceptors suitable for supporting various sized wafers.
摘要:
A method of self-aligned silicidation involves interruption of the silicidation process prior to complete reaction of the blanket material (e.g., metal) in regions directly overlying patterned and exposed other material (e.g., silicon). Diffusion of excess blanket material from over other regions (e.g., overlying insulators) is thus prevented. Control and uniformity are insured by use of conductive rapid thermal annealing in hot wall reactors, with massive heated plates closely spaced from the substrate surfaces. Interruption is particularly facilitated by forced cooling, preferably also by conductive thermal exchange with closely spaced, massive plates.
摘要:
An apparatus for processing a substrate comprises a susceptor for supporting the substrate, an upper heat source spaced above the susceptor, a lower heat source spaced below the susceptor, and a controller. The controller provides power to the heat sources at a selected ratio between the sources. The controller is configured to vary the ratio during a high temperature processing cycle of a substrate to thereby vary the ratio of the heat provided by the heat sources during the cycle.