Abstract:
Provided is a non-volatile memory device including at least one horizontal electrode, at least one vertical electrode, at least one data storage layer and at least one reaction prevention layer. The least one vertical electrode crosses the at least one horizontal electrode. The at least one data storage layer is located in regions in which the at least one vertical electrode crosses the at least one horizontal electrode, and stores data by varying its electrical resistance. The at least one reaction prevention layer is located in the regions in which the at least one vertical electrode crosses the at least one horizontal electrode.
Abstract:
A thermal image sensor including a chalcogenide material, and a method of fabricating the thermal image sensor are provided. The thermal image sensor includes a first metal layer formed on a substrate; a cavity exiting the first metal layer adapted for absorbing infrared rays; a bolometer resistor formed on the cavity and including a chalcogenide material; and a second metal layer formed on the bolometer resistor. The thermal image sensor includes a first metal layer formed on a substrate; an insulating layer formed on the first metal layer; a bolometer resistor formed on the insulating layer, including a chalcogenide material and having a thickness corresponding to ¼ of an infrared wavelength (λ); the thermal image sensor further includes a second metal layer formed on the bolometer resistor.
Abstract:
A storage node may include a lower electrode, a phase change layer on the lower electrode and an upper electrode on the phase change layer, and the lower electrode and the upper electrode may be composed of thermoelectric materials having a melting point higher than that of the phase change layer, and having different conductivity types. An upper surface of the lower electrode may have a recessed shape, and a lower electrode contact layer may be provided between the lower electrode and the phase change layer.
Abstract:
A storage node, a phase change memory device, and methods of operating and fabricating the same are provided. The storage node may include a lower electrode, a phase change layer on the lower electrode and an upper electrode on the phase change layer, and the lower electrode and the upper electrode may be composed of thermoelectric materials having a melting point higher than that of the phase change layer, and having different conductivity types. An upper surface of the lower electrode may have a recessed shape, and a lower electrode contact layer may be provided between the lower electrode and the phase change layer. A thickness of the phase change layer may be about 100 nm or less, and the lower electrode may be composed of an n-type thermoelectric material, and the upper electrode may be composed of a p-type thermoelectric material, or they may be composed on the contrary to the above. Seeback coefficients of the lower electrode, the phase change layer, and the upper electrode may be different from each other.
Abstract:
In some embodiments, the present invention is directed to processes for the combination of injecting charge in a material electrochemically via non-faradaic (double-layer) charging, and retaining this charge and associated desirable properties changes when the electrolyte is removed. The present invention is also directed to compositions and applications using material property changes that are induced electrochemically by double-layer charging and retained during subsequent electrolyte removal. In some embodiments, the present invention provides reversible processes for electrochemically injecting charge into material that is not in direct contact with an electrolyte. Additionally, in some embodiments, the present invention is directed to devices and other material applications that use properties changes resulting from reversible electrochemical charge injection in the absence of an electrolyte.
Abstract:
A phase change random access memory device is disclosed including a first electrode, a second electrode, a phase change material layer between the first and second electrode, a plurality of gate layers formed along the phase change material layer, an insulating film between the phase change material layer and the plurality of gate layers, and a plurality of interlayer insulating layers between the plurality of gate layers and between the first and second electrode and the plurality of gate layers, in which multiple bits of information may be stored in a single memory cell corresponding to the positions of the plurality of gate layers.
Abstract:
In some embodiments, the present invention is directed to processes for the combination of injecting charge in a material electrochemically via non-faradaic (double-layer) charging, and retaining this charge and associated desirable properties changes when the electrolyte is removed. The present invention is also directed to compositions and applications using material property changes that are induced electrochemically by double-layer charging and retained during subsequent electrolyte removal. In some embodiments, the present invention provides reversible processes for electrochemically injecting charge into material that is not in direct contact with an electrolyte. Additionally, in some embodiments, the present invention is directed to devices and other material applications that use properties changes resulting from reversible electrochemical charge injection in the absence of an electrolyte.
Abstract:
Provided are a non-volatile memory device and a method of operating the non-volatile memory device. The non-volatile memory device includes a switching device and a storage node connected to the switching device, wherein the storage node comprises: a first electrode connected to the switching device; a chalcogenide material layer formed on the first electrode; and a second electrode formed on the chalcogenide material layer, and one of the first and second electrodes comprises an electrode contact layer formed adjacent to a limited region of the chalcogenide material layer, and a property of the electrode region adjacent to the chalcogenide material layer is changed reversibly according to the direction in which a current is applied, thereby changing between a high resistance state and a low resistance state.
Abstract:
Insulating impurities may be uniformly distributed over an entire or partial region of the phase change material. The PRAM may include a phase change layer including the phase change material. The insulating impurity content of the phase change material may be 0.1 to 10% (inclusive) the volume of the phase change material. The insulating impurity content of the phase change material may be adjusted by controlling the power applied to a target including the insulating impurities.
Abstract:
A method of measuring a resistance of a memory cell in a resistive memory device can be provided by applying a data write pulse to a selected cell of the resistive memory device, applying a resistance read pulse to the selected cell after a delay time measured from a time of applying the data write pulse, measuring a drop voltage at the cell responsive to a pulse waveform output when applying the resistance read pulse to the selected cell, measuring a total current through the cell using the drop voltage and an internal resistance of a test device coupled to the cell, and determining a resistance of the resistive memory device using the total current and a voltage of the resistance read pulse.