Ultraviolet detector and manufacture method thereof
    1.
    发明授权
    Ultraviolet detector and manufacture method thereof 失效
    紫外检测器及其制造方法

    公开(公告)号:US07009185B2

    公开(公告)日:2006-03-07

    申请号:US10622348

    申请日:2003-07-19

    IPC分类号: G01J1/42

    摘要: The present invention relates to an ultraviolet detector and manufacture method thereof, in which a buffer layer is formed on a baseplate and a P-type GaN layer is formed on the baseplate by using epitaxial method. By availing ion-distribution-and-vegetation technology, a first N-type GaN layer is vegetated and invested in the P-type GaN layer by distributing and vegetating Si+ ions in that layer, and a second N-type GaN layer having a thicker ion concentration is invested in the N-type GaN layer. Finally, an annular and a circular metallic layer are formed between the P-type GaN layer and the first N-type GaN layer as well as inside the second N-type GaN layer, respectively, to serve for respective ohmic contact layers. The present invention is characterized in that an incident light can project upon a depletion layer of the GaN planar structure to have the detection efficiency significantly improved.

    摘要翻译: 紫外检测器及其制造方法技术领域本发明涉及一种紫外线检测器及其制造方法,其中缓冲层形成在基板上,并且通过外延法在基板上形成P型GaN层。 通过利用离子分布和植被技术,通过在该层中分布和植被Si + +离子,将第一N型GaN层植被并投入P型GaN层,并且第二 具有较高离子浓度的N型GaN层被投入到N型GaN层中。 最后,在P型GaN层和第一N型GaN层之间以及第二N型GaN层内分别形成环状和圆形的金属层,以用于各自的欧姆接触层。 本发明的特征在于入射光可以突出在GaN平面结构的耗尽层上,从而显着提高检测效率。

    Method for preparing ion source from nanoparticles
    2.
    发明授权
    Method for preparing ion source from nanoparticles 有权
    从纳米颗粒制备离子源的方法

    公开(公告)号:US08283638B2

    公开(公告)日:2012-10-09

    申请号:US12560451

    申请日:2009-09-16

    IPC分类号: H01J27/02

    摘要: A method for preparing an ion source from nanoparticles is provided. The method includes the steps of: providing nanoparticles, vaporizing the nanoparticles from a solid state to a gaseous state, and ionizing the gas to form the ion source. The ion source is prepared by placing solid nanoparticles in a stainless tube, heating and vaporizing the solid nanoparticles into a gaseous state, and ionizing the gas. The gas can be formed at a lower heating temperature than when solid lumps are used because solid nanoparticles have a lower melting point than solid lumps. Thus, the heating temperature is lowered, and the preparing time of the ion source is shortened. Besides, under the same temperature, an ion source prepared from nanoparticles provides higher vapor pressure and allows a higher implantation dose than when the ion source is prepared from solid lumps, thus expanding the applicability of ion implantation technology.

    摘要翻译: 提供了一种从纳米颗粒制备离子源的方法。 该方法包括以下步骤:提供纳米颗粒,将纳米颗粒从固体状态汽化成气态,并使气体离子化形成离子源。 离子源通过将固体纳米颗粒置于不锈钢管中,将固体纳米颗粒加热并汽化成气态并使气体离子化来制备。 气体可以在比使用固体块时低的加热温度下形成,因为固体纳米颗粒具有比固体块更低的熔点。 因此,加热温度降低,离子源的制备时间缩短。 此外,在相同温度下,从纳米颗粒制备的离子源提供更高的蒸气压力,并且允许比从固体块制备离子源时更高的注入剂量,从而扩大了离子注入技术的适用性。

    Method for Preparing Ion Source From Nanoparticles
    3.
    发明申请
    Method for Preparing Ion Source From Nanoparticles 有权
    从纳米颗粒制备离子源的方法

    公开(公告)号:US20110012024A1

    公开(公告)日:2011-01-20

    申请号:US12560451

    申请日:2009-09-16

    IPC分类号: H01J27/02

    摘要: A method for preparing an ion source from nanoparticles is provided. The method includes the steps of: providing nanoparticles, vaporizing the nanoparticles from a solid state to a gaseous state, and ionizing the gas to form the ion source. The ion source is prepared by placing solid nanoparticles in a stainless tube, heating and vaporizing the solid nanoparticles into a gaseous state, and ionizing the gas. The gas can be formed at a lower heating temperature than when solid lumps are used because solid nanoparticles have a lower melting point than solid lumps. Thus, the heating temperature is lowered, and the preparing time of the ion source is shortened. Besides, under the same temperature, an ion source prepared from nanoparticles provides higher vapor pressure and allows a higher implantation dose than when the ion source is prepared from solid lumps, thus expanding the applicability of ion implantation technology.

    摘要翻译: 提供了一种从纳米颗粒制备离子源的方法。 该方法包括以下步骤:提供纳米颗粒,将纳米颗粒从固体状态汽化成气态,并使气体离子化形成离子源。 离子源通过将固体纳米颗粒置于不锈钢管中,将固体纳米颗粒加热并汽化成气态并使气体离子化来制备。 气体可以在比使用固体块时低的加热温度下形成,因为固体纳米颗粒具有比固体块更低的熔点。 因此,加热温度降低,离子源的制备时间缩短。 此外,在相同温度下,从纳米颗粒制备的离子源提供更高的蒸气压力,并且允许比从固体块制备离子源时更高的注入剂量,从而扩大了离子注入技术的适用性。

    Light-emitting diode structure
    4.
    发明申请
    Light-emitting diode structure 审中-公开
    发光二极管结构

    公开(公告)号:US20070241321A1

    公开(公告)日:2007-10-18

    申请号:US11549637

    申请日:2006-10-13

    IPC分类号: H01L29/06

    CPC分类号: H01L33/42 H01L33/20 H01L33/38

    摘要: A light-emitting diode (LED) structure including a substrate, a first type doped semiconductor layer, an active layer, a second type doped semiconductor layer and a transparent conductive layer is provided. The first type doped semiconductor layer is located on the substrate. The active layer is located on the first type doped semiconductor layer. The second type doped semiconductor layer is located on the active layer, and the transparent conductive layer is disposed on the second type doped semiconductor layer. A portion of the transparent conductive layer and the second type doped semiconductor layer underneath the transparent conductive layer are removed by etching, so as to make the transparent conductive layer to be a mesh structure and to make a surface of the second type doped semiconductor layer to be a rough surface. The occurrence of total internal reflection inside the LED is reduced.

    摘要翻译: 提供了包括衬底,第一类型掺杂半导体层,有源层,第二类型掺杂半导体层和透明导电层的发光二极管(LED)结构。 第一种掺杂半导体层位于衬底上。 有源层位于第一类掺杂半导体层上。 第二类掺杂半导体层位于有源层上,透明导电层设置在第二掺杂半导体层上。 通过蚀刻去除透明导电层下方的透明导电层和第二掺杂半导体层的一部分,以使透明导电层成网状结构,并使第二掺杂半导体层的表面成为 是一个粗糙的表面。 LED内部全反射的发生减少。

    Optical device including a grating
    5.
    发明授权
    Optical device including a grating 失效
    光学装置包括光栅

    公开(公告)号:US5075749A

    公开(公告)日:1991-12-24

    申请号:US680612

    申请日:1991-04-01

    IPC分类号: H01L31/0232 H01L31/0236

    摘要: Substrate-supported optical device structures such as, e.g., quantum-well infrared detectors/detector arrays are provided with a grating for optical coupling. Preferred gratings are formed in a nonepitaxial layer which, preferably, consists of a material which is different from underlying semiconductor material. Conveniently, a grating pattern is formed by etching, with the underlying material serving as an etch stop. For example, on a GaAs--AlGaAs device, polycrystalline silicon can be deposited and etched in this fashion.

    摘要翻译: 基板支持的光学器件结构例如量子阱红外检测器/检测器阵列设置有用于光耦合的光栅。 优选的光栅形成在非外延层中,其优选地由与下面的半导体材料不同的材料组成。 方便地,通过蚀刻形成光栅图案,底层材料用作蚀刻停止。 例如,在GaAs-AlGaAs器件上,可以以这种方式沉积和蚀刻多晶硅。