摘要:
The present invention provides a tuning fork shaped oscillator, an angular velocity sensor element, and an angular velocity sensor with improved breaking strength with respect to CI and drive power, CI stability, and frequency stability. The present invention relates to a tuning fork shaped crystal oscillator of a configuration wherein two tuning fork shaped crystal elements that have been formed by wet etching during the process of forming the external shape of a tuning fork, in such a manner that the longitudinal direction of the tuning fork is aligned on the Y-axis of the crystalline axes (XYZ) and also the lateral direction thereof is aligned on the X-axis, are bonded together with the ±X-axis directions thereof oriented in opposite directions; and the right side surface of each of the two tuning fork shaped crystal elements is the +X face of the crystal when the two tuning fork shaped crystal elements are viewed in an upright attitude.
摘要:
The present invention provides an angular velocity sensor and a method of fabrication thereof that facilitates the work of affixing a tuning-fork-type crystal element and adjusting the same, preventing waste caused by scrapping defective products and also encouraging miniaturization of components. The angular velocity sensor comprises: a tuning-fork-type crystal element which is provided with a drive electrode for exciting the vibration of the tuning fork and a sensor electrode for detecting an electrical charge that is generated in response to an angular velocity that is being detected; an independent pedestal to which a main surface of a tuning-fork base portion of the tuning-fork-type crystal element is previously affixed to form an integrated unit; a main package for surface mounting, in which the tuning-fork-type crystal element is hermetically sealed and which has a cavity with an inner base surface to which the pedestal integrated with the tuning-fork-type crystal element is affixed; and an IC having an oscillation circuit for driving the tuning-fork-type crystal element and a signal processing circuit for creating a signal in correspondence to the angular velocity corresponding to the electrical charge, and which is also disposed either inside or outside the package. The pedestal has a weight and/or shape that ensures that the center of gravity of the tuning-fork-type crystal element that is integrated therewith moves towards the tuning-fork base portion side, maintaining the horizontal alignment of the tuning-fork-type crystal element.
摘要:
The present invention provides a tuning fork shaped oscillator, an angular velocity sensor element, and an angular velocity sensor with improved breaking strength with respect to CI and drive power, CI stability, and frequency stability. The present invention relates to a tuning fork shaped crystal oscillator of a configuration wherein two tuning fork shaped crystal elements that have been formed by wet etching during the process of forming the external shape of a tuning fork, in such a manner that the longitudinal direction of the tuning fork is aligned on the Y-axis of the crystalline axes (XYZ) and also the lateral direction thereof is aligned on the X-axis, are bonded together with the ±X-axis directions thereof oriented in opposite directions; and the right side surface of each of the two tuning fork shaped crystal elements is the +X face of the crystal when the two tuning fork shaped crystal elements are viewed in an upright attitude.
摘要:
A tuning-fork-type piezoelectric vibrating plate with a suppressed CI value and a piezoelectric device using thereof are provided. The tuning-fork-type piezoelectric vibrating plate includes: a base section formed by a piezoelectric material; and a pair of vibrating arms extended from the base section along a predetermined direction. On a front surface and a back surface of the vibrating arms, a first excitation groove is formed at the base section side, a second excitation groove is formed at a tip side of the vibrating arms, and a partition section is formed to separate the first excitation groove from the second excitation groove. A length from the base section side of the first excitation groove to the tip side of the second excitation groove in the predetermined direction is L1; a length of the first excitation groove in the predetermined direction is L2, and the ratio L2/L1 ranges from 0.51 to 0.65.
摘要:
The present invention provides a tuning fork shaped oscillator, an angular velocity sensor element, and an angular velocity sensor with improved breaking strength with respect to CI and drive power, CI stability, and frequency stability. The present invention relates to a tuning fork shaped crystal oscillator of a configuration wherein two tuning fork shaped crystal elements that have been formed by wet etching during the process of forming the external shape of a tuning fork, in such a manner that the longitudinal direction of the tuning fork is aligned on the Y-axis of the crystalline axes (XYZ) and also the lateral direction thereof is aligned on the X-axis, are bonded together with the ±X-axis directions thereof oriented in opposite directions; and the right side surface of each of the two tuning fork shaped crystal elements is the +X face of the crystal when the two tuning fork shaped crystal elements are viewed in an upright attitude.
摘要:
The present invention provides an angular velocity sensor and a method of fabrication thereof that facilitates the work of affixing a tuning-fork-type crystal element and adjusting the same, preventing waste caused by scrapping defective products and also encouraging miniaturization of components. The angular velocity sensor comprises: a tuning-fork-type crystal element which is provided with a drive electrode for exciting the vibration of the tuning fork and a sensor electrode for detecting an electrical charge that is generated in response to an angular velocity that is being detected; an independent pedestal to which a main surface of a tuning-fork base portion of the tuning-fork-type crystal element is previously affixed to form an integrated unit; a main package for surface mounting, in which the tuning-fork-type crystal element is hermetically sealed and which has a cavity with an inner base surface to which the pedestal integrated with the tuning-fork-type crystal element is affixed; and an IC having an oscillation circuit for driving the tuning-fork-type crystal element and a signal processing circuit for creating a signal in correspondence to the angular velocity corresponding to the electrical charge, and which is also disposed either inside or outside the package. The pedestal has a weight and/or shape that ensures that the center of gravity of the tuning-fork-type crystal element that is integrated therewith moves towards the tuning-fork base portion side, maintaining the horizontal alignment of the tuning-fork-type crystal element.
摘要:
The invention relates to a tuning-fork type crystal resonator in which the frequency adjustment accuracy is increased, and a frequency adjustment method thereof. In a tuning-fork type crystal resonator having a tuning-fork shaped piece of quartz crystal in which a pair of tuning fork arms extend from a tuning fork base, and a frequency adjustment method thereof, there is provided a first frequency adjustment step for adjusting an oscillation frequency by forming inclined surfaces spanning from outer peripheral surfaces surrounding the pair of tuning fork arms toward distal end surfaces, by using a femtosecond laser irradiated in a direction from the outer peripheral surfaces toward the distal end surfaces, or in a direction from the distal end surfaces toward the outer peripheral surfaces.
摘要:
The invention relates to a tuning-fork type crystal resonator in which the frequency adjustment accuracy is increased, and a frequency adjustment method thereof. In a tuning-fork type crystal resonator having a tuning-fork shaped piece of quartz crystal in which a pair of tuning fork arms extend from a tuning fork base, and a frequency adjustment method thereof, there is provided a first frequency adjustment step for adjusting an oscillation frequency by forming inclined surfaces spanning from outer peripheral surfaces surrounding the pair of tuning fork arms toward distal end surfaces, by using a femtosecond laser irradiated in a direction from the outer peripheral surfaces toward the distal end surfaces, or in a direction from the distal end surfaces toward the outer peripheral surfaces.
摘要:
A manufacturing method produces an angular velocity sensor element easily with a high degree of accuracy. The manufacturing method includes forming a number of tuning fork shaped crystal elements on a single crystal wafer by a photo-etching technique, the crystal elements having protrusion ridge line sections in the lengthwise direction of +X faces of the crystal, caused by etching anisotropy. A step is included for forming a metallic film on each side face including both principal planes and said +X face of said tuning fork shaped crystal element of the single crystal wafer. The method also includes dividing the metallic film of the +X face along the protrusion ridge line section and forming first and second sensor electrodes.
摘要:
The present invention provides an angular velocity sensor element that can be produced easily with a high degree of accuracy, and a manufacturing method thereof. In the angular velocity sensor element of the present invention, the lengthwise direction of a tuning fork shaped crystal element is a Y axis of a crystal axis, the widthwise direction is an X axis and the depthwise direction is a Z axis, and mutually electrically separated first and second sensor electrodes for angular velocity detection are provided on at least one face among side faces of the tuning fork arm. The tuning fork shaped crystal element is formed from a single crystal wafer by a photo-etching technique, and the side face of the tuning fork arm on which the first and second sensor electrodes are formed is a +X face of the crystal, and the first and second sensor electrodes are arranged on both sides of a protrusion ridge line section on the +X face that occurs in the lengthwise direction of the side face due to crystallinity of the crystal.