Abstract:
The invention provides a composite of α-calcium sulfate (CS) hemihydrate/amorphous calcium phosphate (α-CSH/ACP), comprising α-CSH and ACP at a weight ratio of about 10:90 to about 90:10. Particularly, the composite of the invention has a resorption period of 3-6 months. The invention also provides a one-pot process for producing α-CSH/ACP composite of the invention. The one-pot process of the invention can produce α-CSH and ACP in a single process and easily obtain α-CSH/ACP composite.
Abstract:
The invention relates to a simple and high yield process for producing a regenerated silk fibroin which does not need dialysis. Particularly, a process of the invention is characterized in that the silk fibroin is precipitated by applying a shear stress and/or changing the solvent power of the fibroin solution. The process of the invention simplifies the process of producing silk fibroin and greatly shortens the process time to 1 to 2 hours, whereas the conventional dialysis process is complex and needs around 2 to 3 days. In addition to reducing the time needed, the process of the invention can increase productivity of silk fibroin by at least 8%.
Abstract:
The invention provides a process for preparing α-calcium sulfate hemihydrate which comprises the following steps: adding aqueous solutions containing sulfate ions and calcium ions to calcium chloride solution with a range of concentration; reacting the mixture of a) at a range of temperature for an appropriate time; filtering and washing the reaction products of b) with a rising solvent to isolate the solid and liquid phases; and d) collecting and drying the solid phase to obtain α-calcium sulfate hemihydrate with high purity; wherein the relationship between the range of the concentration of calcium chloride (y) and the range of the reaction temperature (x) is shown as the following formula: −0.4x5+7.33x4−52.83x3+187.17x2−328.27x+316
Abstract:
The present invention relates to a process of using a heat responsive mixture to produce inorganic interconnected 3D open-cell bone substitutes which can be applied in the orthopedic or dental field for treatment of bone damage. The invention provides a simple and easily-controlled process of preparing porous inorganic bone substitute materials.
Abstract:
The invention relates to a simple and high yield process for producing a regenerated silk fibroin which does not need dialysis. Particularly, a process of the invention is characterized in that the silk fibroin is precipitated by applying a shear stress and/or changing the solvent power of the fibroin solution. The process of the invention simplifies the process of producing silk fibroin and greatly shortens the process time to 1 to 2 hours, whereas the conventional dialysis process is complex and needs around 2 to 3 days. In addition to reducing the time needed, the process of the invention can increase productivity of silk fibroin by at least 8%.
Abstract:
The invention provides a process for preparing α-calcium sulfate hemihydrate which comprises the following steps: adding aqueous solutions containing sulfate ions and calcium ions to calcium chloride solution with a range of concentration; reacting the mixture of a) at a range of temperature for an appropriate time; filtering and washing the reaction products of b) with a rising solvent to isolate the solid and liquid phases; and d) collecting and drying the solid phase to obtain α-calcium sulfate hemihydrate with high purity; wherein the relationship between the range of the concentration of calcium chloride (y) and the range of the reaction temperature (x) is shown as the following formula: −0.4x5+7.33x4−52.83x3+187.17x2−328.27x+316
Abstract:
The invention provides a composite of α-calcium sulfate (CS) hemihydrate/amorphous calcium phosphate (α-CSH/ACP), comprising α-CSH and ACP at a weight ratio of about 10:90 to about 90:10. Particularly, the composite of the invention has a resorption period of 3-6 months. The invention also provides a one-pot process for producing α-CSH/ACP composite of the invention. The one-pot process of the invention can produce α-CSH and ACP in a single process and easily obtain α-CSH/ACP composite.
Abstract:
The invention is directed to a calcium phosphate complex and the composition containing the same for oral care applications, in which the calcium phosphate complex is formed by chelating the γ-polyglutamic acid (γ-PGA) with amorphous calcium phosphate (ACP). This complex can prevent crystallization of ACP and maintain its high solubility. The calcium phosphate complex has superior mucoadhesion properties, allowing it to remain in the mouth longer and offering effective buffering, by which dental caries can be alleviated and prevented.
Abstract:
The present invention relates to a process of using a heat responsive mixture to produce inorganic interconnected 3D open-cell bone substitutes which can be applied in the orthopedic or dental field for treatment of bone damage. The invention provides a simple and easily-controlled process of preparing porous inorganic bone substitute materials.
Abstract:
The invention is directed to a calcium phosphate complex and the composition containing the same for oral care applications, in which the calcium phosphate complex is formed by chelating the γ-polyglutamic acid (γ-PGA) with amorphous calcium phosphate (ACP). This complex can prevent crystallization of ACP and maintain its high solubility. The calcium phosphate complex has superior mucoadhesion properties, allowing it to remain in the mouth longer and offering effective buffering, by which dental caries can be alleviated and prevented.