Abstract:
A fuel vapor processing system includes a canister, a tank passage communicating between the canister and the fuel tank, and a purge passage communicating between the canister and the intake air passage. Fuel vapor adsorbed by the canister can be desorbed and purged into the intake air passage via the purge passage due to a negative pressure produced in the intake air passage. A desorption promoting device can promote desorption of fuel vapor from the canister. A control unit controls the desorption device, so that the desorption promoting device promotes desorption of fuel vapor from the canister during desorption through the purge passage due to the negative pressure.
Abstract:
An adsorbent canister includes a casing defining a first adsorption chamber, a second adsorption chamber and a diffusion chamber therein, and an adsorbent capable of adsorbing the fuel vapor and filled in the first adsorption chamber and the second adsorption chamber. The first adsorption chamber and the second adsorption chamber communicate with each other via the diffusion chamber. The casing has on a side wall thereof a fuel introducing port configured to introduce fuel vapor into the first adsorption chamber and an air communicating port configured to introduce air into the second adsorption chamber. The diffusion chamber has at least one of a first diffusion chamber and a second diffusion chamber. The first adsorption chamber is positioned above the first adsorption chamber and extends over the entire length of the first adsorption chamber. The second diffusion chamber is positioned below the second adsorption chamber and extends over the entire length of the second adsorption chamber.
Abstract:
A fuel vapor processing system includes a canister, a tank passage communicating between the canister and the fuel tank, and a purge passage communicating between the canister and the intake air passage. Fuel vapor adsorbed by the canister can be desorbed and purged into the intake air passage via the purge passage due to a negative pressure produced in the intake air passage. A desorption promoting device can promote desorption of fuel vapor from the canister. A control unit controls the desorption device, so that the desorption promoting device promotes desorption of fuel vapor from the canister during desorption through the purge passage due to the negative pressure.
Abstract:
A flexible flat cable having good flexibility and bending resistance without deterioration of a good electrical characteristic of a strip structure and capable of enhancing cost effectiveness is provided. The flexible flat cable includes: a first shield member and a second shield member disposed in such a manner as to cover a surface of a cable body including a plurality of conductors arranged in parallel with a prescribed pitch therebetween. Each of the first and second shield members includes a metal member formed by placing a conductive adhesive layer placed between a plurality of metal layers, and allows one of outer most layers of the metal layers to be conductively connected with a ground layer.
Abstract:
A flexible flat cable capable of having good flexibility and good bending strength while reducing a thickness thereof without damaging a good electrical characteristic of a strip structure and capable of enhancing cost effectiveness is provided. The flexible flat cable includes: an air-containing layer, serving as an insulating member, having a width substantially the same as a transmission path width of a cable body including a plurality of conductors arranged in a prescribed pitch, the air-containing layer being disposed in such a manner as to sandwich the cable body from both sides; and shield members disposed in such a manner as to cover a surface of the air-containing layer and to be conductively connected to a ground layer at terminal portions of both ends of the cable body. The air-containing layer includes non-woven fabrics cut in a width substantially the same as the transmission path width of the cable body.
Abstract:
A production method and system is able to produce air-packing device with high efficiency and reliability. The production method is comprised of the steps of: superposing a check valve thermoplastic film on a first air-packing thermoplastic film; bonding the two thermoplastic films for creating a plurality of check valves by heating the thermoplastic films; superposing a second air-packing thermoplastic film on the first air-packing thermoplastic film; and bonding the thermoplastic films by heating the thermoplastic films by a second heater, thereby creating a plurality of air containers each having a check valve. A heat resistant film provided between the thermoplastic films and the heater is moved in a direction opposite to a feeding direction of the thermoplastic films immediately after each bonding step.
Abstract:
This invention relates to a sliding guide apparatus for, for example, a linear guiding apparatus, curved guiding apparatus, swiveling bearing or the like for infinite sliding motion, and more particularly to a sliding guide apparatus wherein an end-present rolling element chain for supporting a linear motion or rotary motion is inserted in a full track. The sliding guide apparatus comprises a track rail having a rolling path for rolling elements extending in the length direction of the sliding guide apparatus, a moving body which contains a loaded rolling path facing the aforementioned rolling path and an unloaded rolling path which circulates the rolling elements from one end to the other end of the loaded rolling path and moves along the aforementioned track rail, and a plurality of rolling elements which roll between the moving body and track rail while being loaded with a load and circulate in a full track composed of the loaded rolling path and unloaded rolling path of the aforementioned moving body. The rolling elements are disposed in line at predetermined intervals in a single or plurality of flexible connecting belts such that they can roll freely and incorporated in the full track of the sliding member together with the connecting belts. The connecting belts circulate with the balls in the full track of the sliding member while both end portions thereof are opposed to each other.
Abstract:
Detection of abnormalities of an idle speed control system is performed based on whether a deviation of an on-idle engine speed from a target engine speed is within a critical range which is changed so as to make the idle speed control system harder to be judged abnormal when the engine is in a lapped state where the engine is apt to change speed than when in a green state where the engine is hardly changeable in speed.
Abstract:
A non-membrane type electrolytic cell (10) comprises an anode plate (16, 20) and a cathode plate (18) which are arranged opposite to each other with an electrically insulating spacer (22) sandwiched therebetween. The spacer (22) is formed of plastics having a water absorption of not more than 0.3%, preferably not more than 0.2%, more preferably not more than 0.01%. Deposition of scale, such as calcium carbonate, on the spacer (22) is prevented.
Abstract:
A laser robot having a height sensing device (13) arranged at a position very close to a laser-beam projecting machining head (9) so that the axis of the height-sensing device (13) is parallel to the longitudinal axis of the machining head (9), the three-dimensional distance data representing the positional relationship between the laser projecting nozzle (9a) of the machining head (9) and the measuring end (13a) of the height-sensing device (13) being stored in advance in the robot controller (10), the longitudinal distance between the height-sensing device (13) and a starting point of laser-beam machining being automatically measured from directly above the starting point, and a longitudinal distance between the laser beam projecting nozzle (9a) of the machining head (9) and the machining starting point being corrected on the basis of the three-dimensional distance data and the longitudinal distance measured by the height sensing device (13) to thereby accurately locate the machining head at a position corresponding to the starting point for the laser machining operation.