Abstract:
A method for fabricating a component having an electrical contact region on an n-conducting AlGaInP-based or AlGaInAs-based outer layer of an epitaxially grown semiconductor layer sequence, in which electrical contact material, which includes Au and at least one dopant, is applied and the outer layer is then annealed. The dopant contains at least one element selected from the group consisting of Ge, Si, Sn and Te. Also, a component is disclosed which includes an epitaxially grown semiconductor layer sequence with an active zone which emits electromagnetic radiation, the semiconductor layer sequence having an n-conducting AlGaInP-based or AlGaInAs-based outer layer, to which an electrical contact region is applied using the method described.
Abstract:
A method for fabricating a component having an electrical contact region on an n-conducting AlGaInP-based or AlGaInAs-based outer layer of an epitaxially grown semiconductor layer sequence, in which electrical contact material, which includes Au and at least one dopant, is applied and the outer layer is then annealed. The dopant contains at least one element selected from the group consisting of Ge, Si, Sn and Te. Also, a component is disclosed which includes an epitaxially grown semiconductor layer sequence with an active zone which emits electromagnetic radiation, the semiconductor layer sequence having an n-conducting AlGaInP-based or AlGaInAs-based outer layer, to which an electrical contact region is applied using the method described.
Abstract:
An optoelectronic semiconductor body has a substrate that includes a strained layer that is applied to the substrate in a first epitaxy step. The strained layer includes at least one recess formed vertically in the strained layer. In a second epitaxy step, a further layer applied to the strained layer. The further layer fills the at least one recess and covers the strained layer at least in some areas.
Abstract:
In a radiation-emitting semiconductor component with a layer structure comprising an n-doped confinement layer, a p-doped confinement layer, and an active, photon-emitting layer disposed between the n-doped confinement layer and the p-doped confinement layer, it is provided according to the invention that the n-doped confinement layer is doped with a first n-dopant (or two mutually different n-dopants) for producing high active doping and a sharp doping profile, and the active layer is doped with only one second n-dopant, different from the first dopant, for improving the layer quality of the active layer.
Abstract:
An optoelectronic semiconductor body has a substrate that includes a strained layer that is applied to the substrate in a first epitaxy step. The strained layer includes at least one recess formed vertically in the strained layer. In a second epitaxy step, a further layer applied to the strained layer. The further layer fills the at least one recess and covers the strained layer at least in some areas.
Abstract:
A radiation-emitting semiconductor with a radiation-emitting active layer having InxAlyGa1-x-yP (0≦x≦1, 0≦y≦1, 0≦x+y≦1) is described. The active layer is arranged between a first confinement layer and a second confinement layer. The layers can contain InxAlyGa1-x-yPuN1-u (0≦x≦1, 0≦y≦1, 0≦x+y≦1 and 0≦u
Abstract translation:描述了具有In x Al y Ga 1-x-y P(0≤x≤1,0<= y <= 1,0,0 <= x + y <= 1)的辐射发射有源层的辐射发射半导体。 有源层布置在第一限制层和第二限制层之间。 这些层可以包含In x Al y Ga 1-x-y P u N 1-u(0≤x≤1,0<= y <=1,0,0≤x+y≤1且0 <= u <1),BzInxAlyGa1-xy- zPuN1-u(0≤x≤1,0<= y <= 1,0,0
Abstract:
In a radiation-emitting semiconductor component with a layer structure comprising an n-doped confinement layer, a p-doped confinement layer, and an active, photon-emitting layer disposed between the n-doped confinement layer and the p-doped confinement layer, it is provided according to the invention that the n-doped confinement layer is doped with a first n-dopant (or two mutually different n-dopants) for producing high active doping and a sharp doping profile, and the active layer is doped with only one second n-dopant, different from the first dopant, for improving the layer quality of the active layer.
Abstract:
A radiation-emitting semiconductor component with a semiconductor body, including a first principal surface (5), a second principal surface (9) and a semiconductor layer sequence (4) with an electromagnetic radiation generating active zone (7), in which the semiconductor layer sequence (4) is disposed between the first and the second principal surfaces (5, 9), a first current spreading layer (3) is disposed on the first principal surface (5) and electrically conductively connected to the semiconductor layer sequence (4), and a second current spreading layer (10) is disposed on the second principal surface (9) and electrically conductively connected to the semiconductor layer sequence (4).
Abstract:
A method for fabricating a component having an electrical contact region on an n-conducting AlGaInP-based or AlGaInAs-based outer layer of an epitaxially grown semiconductor layer sequence, in which electrical contact material, which includes Au and at least one dopant, is applied and the outer layer is then annealed. The dopant contains at least one element selected from the group consisting of Ge, Si, Sn and Te. Also, a component is disclosed which includes an epitaxially grown semiconductor layer sequence with an active zone which emits electromagnetic radiation, the semiconductor layer sequence having an n-conducting AlGaInP-based or AlGaInAs-based outer layer, to which an electrical contact region is applied using the method described.
Abstract:
A method for fabricating a component having an electrical contact region on an n-conducting AlGaInP-based or AlGaInAs-based outer layer of an epitaxially grown semiconductor layer sequence, in which electrical contact material, which includes Au and at least one dopant, is applied and the outer layer is then annealed. The dopant contains at least one element selected from the group consisting of Ge, Si, Sn and Te. Also, a component is disclosed which includes an epitaxially grown semiconductor layer sequence with an active zone which emits electromagnetic radiation, the semiconductor layer sequence having an n-conducting AlGaInP-based or AlGaInAs-based outer layer, to which an electrical contact region is applied using the method described.