摘要:
In the case of a reinforcing system for reinforcing a cavity of a structural element, a carrier element is connected to the structural element in the structural element for reinforcement purposes. The carrier element has channels, an adhesive is disposed in the cavity between the carrier element and the structural element, and the adhesive can be introduced into the cavity between the carrier element and the structural element by means of the channels.
摘要:
A filler mixture comprising an organophilic layer silicate obtainable by treatment of a natural or synthetic layer silicate with a swelling agent selected from sulfonium, phosphonium and ammonium compounds (salts of melamine compounds and cyclic amidine compounds being excluded as ammonium compounds) and a mineral filler different therefrom, yields, in combination with thermosetting resins, nanocomposites having improved mechanical properties.
摘要:
The disclosure relates to the field of two-component epoxy resin compositions and to the use thereof as a repair adhesive, in particular in vehicle manufacturing. The two-component epoxy resin compositions according to the disclosure contain a curing component K2, which comprises between 1 and 10 wt. % of an amino group-terminated polyamide B, together with an epoxy resin component K1. The compositions show that the impact resistance is highly increased while an acceptable sheer strength is simultaneously retained.
摘要:
Heat-curable epoxy resin compositions and the use thereof, for example, in motor vehicle construction and sandwich panel construction, are disclosed. Exemplary heat-curable epoxy resin compositions include, in addition to epoxy resin components A1, optionally A2, a hardener component B, a carboxylic acid C and a hydroxyalkylamide or hydroxyalkylurea H, an accelerator E for activation of the conversion of components A1, A2 and B. The compositions and the structural foams produced therefrom are notable for high mechanical strength, high glass strength and good adhesion capacity on metallic and nonmetallic substrates, and it is possible at the same time to dispense with the use of toxic or inflammable blowing agents.
摘要:
The present disclosure relates to impact strength modifiers, the derivative products thereof, and the use thereof in producing two-component epoxy resin compositions. The disclosure in particular relates to amino group terminated impact strength modifiers prepared by reacting a polyurethane prepolymer having isocyanate groups, a primary diamine, and optionally at least one Michael acceptor. The two-component epoxy resin compositions thus formulated are characterized by a great increase in impact strength while retaining an acceptable tensile shear strength. The impact strength modifiers according to the disclosure and the epoxy resin compositions comprising same are in particular suitable for vehicle manufacturing.
摘要:
Heat-curable epoxy resin compositions and the use thereof, for example, in motor vehicle construction and sandwich panel construction, are disclosed. Exemplary heat-curable epoxy resin compositions include, in addition to epoxy resin components A1, optionally A2, a hardener component B, a carboxylic acid C and a hydroxyalkylamide or hydroxyalkylurea H, an accelerator E for activation of the conversion of components A1, A2 and B. The compositions and the structural foams produced therefrom are notable for high mechanical strength, high glass strength and good adhesion capacity on metallic and nonmetallic substrates, and it is possible at the same time to dispense with the use of toxic or inflammable blowing agents.
摘要:
The present invention relates to compositions which contain at least one epoxide adduct A having on average more than one epoxide group per molecule, at least one polymer B of the formula (I), at least one thixotropic agent C, based on a urea derivative in a nondiffusing carrier material, and at least one curing agent D for epoxy resins, which is activated by elevated temperature. This composition serves in particular as an adhesive and has an extremely high dynamic resistance to cleavage, in particular at low temperatures.The invention furthermore relates to impact strength modifiers terminated with epoxide groups and of the formula (I). It has been found that these novel impact strength modifiers result in a significant increase in impact strength in epoxy resin compositions, in particular in two-component epoxy resin compositions.
摘要:
Embodiments relate to viscosifiers that are terminated polymers that have functional terminal groups. The polymers being pre-extended by polyepoxides and being reacted to give polymers that are terminated by other functional groups. The viscosifiers have a low content in educts or educt descendants that deteriorate the properties of compositions and considerably reduce or even exclude the formation of high-molecular addition products so that the products obtained have low viscosity and good storage stability.
摘要:
The present disclosure relates to impact strength modifiers, the derivative products thereof, and the use thereof in producing two-component epoxy resin compositions. The disclosure in particular relates to amino group terminated impact strength modifiers prepared by reacting a polyurethane prepolymer having isocyanate groups, a primary diamine, and optionally at least one Michael acceptor. The two-component epoxy resin compositions thus formulated are characterized by a great increase in impact strength while retaining an acceptable tensile shear strength. The impact strength modifiers according to the disclosure and the epoxy resin compositions comprising same are in particular suitable for vehicle manufacturing.
摘要:
The present invention relates to epoxy group-terminated polymers of the formula (I). Said epoxy group-terminated polymers are suited extremely well as impact resistance modifiers, particularly in epoxy resin compositions. They are particularly suited for use in heat-curing epoxy resin adhesives. It has been found that such epoxy resin compositions not only have excellent mechanical properties and high glass transition temperatures, but also above all improved impact resistance properties, both at room temperature and at low temperatures.