摘要:
A III-V semiconductor FET (10, 30, 40) having etched ohmic contacts (19, 20, 36, 37, 43, 44). A gate (16) of the FET (10, 30, 40) is formed in contact with a surface of a III-V substrate (11). An ohmic contact (19, 20, 36, 37, 43, 44) is created to include an alloy in contact with the surface of the substrate (11). The ohmic contact (19, 20, 36, 37, 43, 44) is formed to abut the gate structure (16, 17, 18) by covering a portion of the gate structure (16, 17, 18) and the substrate (11) with the ohmic contact (19, 20, 36, 37, 43, 44), then, removing portions of the ohmic contact from the gate structure (16, 17, 18) by etching. The ohmic contact (19, 20, 36, 37, 43, 44) is formed to be substantially devoid of gold.
摘要:
A manufacturable III-V semiconductor gate structure having small geometries is fabricated. A silicon nitride layer is formed on a III-V semiconductor material and a dielectric layer comprised of aluminum is formed on the silicon nitride layer. Another dielectric layer comprised of silicon and oxygen is formed over the dielectric layer comprised of aluminum. The dielectric layer comprised of aluminum acts as an etch stop for the etching of the dielectric layer comprised of silicon and oxygen with a high power reactive ion etch. The dielectric layer comprised of aluminum may then be etched with a wet etchant which does not substantially etch the silicon nitride layer. Damage to the surface of the semiconductor material by exposure to the high power reactive ion etch is prevented by forming the dielectric layer comprised of aluminum between the silicon nitride layer and the dielectric layer comprised of silicon and oxygen.
摘要:
The present invention provides a III-V semiconductor FET (10, 30, 40) having etched ohmic contacts (19, 20, 36, 37, 43, 44). A gate (16) of the FET (10, 30, 40) is formed in contact with a surface of a III-V substrate (11). An ohmic contact (19, 20, 36, 37, 43, 44) is created to include an alloy in contact with the surface of the substrate (11). The ohmic contact (19, 20, 36, 37, 43, 44) is formed to abut the gate structure (16, 17, 18) by covering a portion of the gate structure (16, 17, 18) and the substrate (11) with the ohmic contact (19, 20, 36, 37, 43, 44), then, removing portions of the ohmic contact from the gate structure (16, 17, 18) by etching. The ohmic contact (19, 20, 36, 37, 43, 44) is formed to be substantially devoid of gold.
摘要:
A method for making a shallow junction in a gallium arsenide substrate including implanting doping ions into an upper surface of the substrate and incorporating sulfur into the upper surface of the substrate after the ion implantation. A capping layer is deposited on the upper surface and the substrate is heat annealed to activate the doping atoms.
摘要:
A process for improving uniformity across the surface of a substrate during a plasma process such as plasma etching. A conductive plane is formed at the back surface of the substrate. A plasma process is then performed to the front surface of the substrate. The conductive plane may then be removed upon completion of the plasma process and before final processing steps.
摘要:
A manufacturable III-V semiconductor structure having small geometries is fabricated. A silicon nitride layer is formed on a III-V semiconductor material and a dielectric layer comprised of aluminum is formed on the silicon nitride layer. Another dielectric layer comprised of silicon and oxygen is formed over the dielectric layer comprised of aluminum. The dielectric layer comprised of aluminum acts as an etch stop for the etching of the dielectric layer comprised of silicon and oxygen with a high power reactive ion etch. The dielectric layer comprised of aluminum may then be etched with a wet etchant which does not substantially etch the silicon nitride layer. Damage to the surface of the semiconductor material by exposure to the high power reactive ion etch is prevented by forming the dielectric layer comprised of aluminum between the silicon nitride layer and the dielectric layer comprised of silicon and oxygen.
摘要:
The present invention encompasses a method for providing the same ohmic material contact (120, 122, 124) to N-type and P-type regions (70, 80) of a III-V semiconductor device. Specifically, an N-type region (70) extending through a semiconductor structure is formed. Additionally, a P-type region (80) extending through the substrate is formed. The P-type region (80) may be heavily doped with P-type impurities (81). A first ohmic region (117) is formed, contacting the N-type region (70). The first ohmic region may comprise an ohmic material including metal and an N-type dopant. A second ohmic region (119) is formed, contacting the P-type region (80, 81). The second ohmic region comprises the same ohmic material as the first ohmic region. One ohmic material that may be used is nickel-germanium-tungsten.
摘要:
An ohmic contact to a III-V semiconductor material is fabricated by dry etching a silicon nitride layer overlying the III-V semiconductor material with a chemical comprised of a group VI element. An ohmic metal layer is formed on the III-V semiconductor material after the silicon nitride layer is etched and before any exposure of the III-V semiconductor material to a chemical which etches the III-V semiconductor material or removes the group VI element.
摘要:
An etch stop layer prevents damage to the underlying semiconductor material or metallization layer during etching of a dielectric layer overlying the etch stop layer. The etch stop layer, aluminum nitride or aluminum oxide is used underlying silicon dioxide to prevent damage to the semiconductor material during a fluorocarbon based etch of the silicon dioxide. The etch stop layer is also used underlying a silicon dioxide layer and overlying a titanium nitride or titanium tungsten layer used in metallization to prevent etching of the titanium nitride or titanium tungsten layer during etching of the silicon dioxide.
摘要:
A manufacturable III-V semiconductor gate structure having small geometries is fabricated. A silicon nitride layer is formed on a III-V semiconductor material and a dielectric layer comprised of aluminum is formed on the silicon nitride layer. Another dielectric layer comprised of silicon and oxygen is formed over the dielectric layer comprised of aluminum. The dielectric layer comprised of aluminum acts as an etch stop for the etching of the dielectric layer comprised of silicon and oxygen with a high power reactive ion etch. The dielectric layer comprised of aluminum may then be etched with a wet etchant which does not substantially etch the silicon nitride layer. Damage to the surface of the semiconductor material by exposure to the high power reactive ion etch is prevented by forming the dielectric layer comprised of aluminum between the silicon nitride layer and the dielectric layer comprised of silicon and oxygen.